YU Dahui, CHU Kahou. Species status of Chinese Pinctada fucata, Japanese P. fucata martensii and Australian P. imbricata using ITS and AFLP markers[J]. South China Fisheries Science, 2006, 2(5): 36-44.
Citation: YU Dahui, CHU Kahou. Species status of Chinese Pinctada fucata, Japanese P. fucata martensii and Australian P. imbricata using ITS and AFLP markers[J]. South China Fisheries Science, 2006, 2(5): 36-44.

Species status of Chinese Pinctada fucata, Japanese P. fucata martensii and Australian P. imbricata using ITS and AFLP markers

More Information
  • Received Date: May 18, 2006
  • Revised Date: June 03, 2006
  • Species status for Chinese Pinctada fucata, Japanese P. fucata martensii and Australian P. imbricata was investigated using ITSs and AFLP. The results indicated that genetic differentiation among populations of the three nominal species is low, and intraspecific and interspecific genetic distances are overlapping, as revealed by ITSs and AFLP markers. Based on AFLP data, phylogenetic analysis showed that most individuals from P. imbricata population are clustered together, consistent with the result from principal component analysis. It was found that the three nominal species are genetically isolated by geographic distance. AMOVA indicated that no more than 6% of the total variation is attributed to interspecific differences. These observations support the hypothesis that the three species are conspecific. According to the priority rule of nomination, the correct name of the species should be P. fucata because Atlantic P. imbricata is reported to be genetically different from Australian P. imbricata.

  • [1]
    蔡英亚, 庄启谦. 关于拉汉软体动物名称一些问题的商榷[J]. 湛江海洋大学学报, 2001, 21(4): 84. doi: 10.3969/j.issn.1673-9159.2001.04.018
    [2]
    王祯瑞. 中国近海珍珠贝科的研究[J]. 海洋科学集刊, 1978(14): 101-115. http://qdhys.ijournal.cn/hykxjk/ch/reader/create_pdf.aspx?file_no=19781407&year_id=1978&quarter_id=14&falg=1
    [3]
    王祯瑞. 中国动物志·无脊椎动物第31卷·双壳纲珍珠贝亚目[M]. 北京: 科学出版社, 2002: 68-98.
    [4]
    UEMOTO H. Studies on the gonad of the pearl oyster Pinctuda martensii (Dunker). Ⅱ. Histological observation with regard to both seasonal variation and the change during the course of the artificial spawning[J]. Bull Natl Pearl Res Lab, 1958, 4(3): 287-307(in Japanese with English abstract).
    [5]
    WADA K T. Breeding study of the pearl oyster, Pinctada fucata[J]. Bull Natl Res Inst Aquac, 1984, 6(1): 79-157(in Japanese with English abstract). https://www.semanticscholar.org/paper/Breeding-study-of-the-pearl-oyster,-Pinctada-fucata-Wada/4ac4286f476d8b4f0dfba2b7824efff5195755ce
    [6]
    KURODA T, HABE T, OHYAMA K. The sea shells of Sagami Bay[M]. Maruzen, Tokyo: [s. n. ], 1971: 500.
    [7]
    WADA K T, KOMARU A, ICHIMURA Y, et al. Spawning peak occurs during winter in the Japanese subtropical population of the pearl oyster, Pinctada fucata fucata (Gould, 1850) [J]. Aquac, 1995, 133(2): 207-214. https://www.sciencedirect.com/science/article/pii/004484869500011P
    [8]
    HYND J S. A revision of the Australian pearl-shells, genus Pinctada (Lamellibranchia)[J]. Aust J Mar Freshw Res, 1955, 6(2): 98-137. https://www.semanticscholar.org/paper/A-Revision-of-the-Australian-Pearl-shells%2C-Genus-Hynd/693922a15b15f41ba9b14d187b6cad90d4f8b646
    [9]
    RANSON G. Les esp ces d'hu tres perli res du genre Pinctada(biologie de quelques-unes d'entre elles). Institute Royal des Sciences Naturelles de Belgique, M moires[M]. deuxi me s rie, fasc, 1961, 67, 1-95, pl. Ⅰ-XLⅡ(in French).
    [10]
    SHIRAI S. Pearls and pearl oysters of the world[M]. Okinawa, Japan: Marine Planning Company, 1994: 108.
    [11]
    COLGAN D J, PONDER W F. Genetic discrimination of morphologically similar, sympatric species of pearl oysters (Mollusca: Bivalvia: Pinctada) in eastern Australia[J]. Mar Freshw Res, 2002, 53(7): 697-709. https://www.semanticscholar.org/paper/Genetic-discrimination-of-morphologically-similar%2C-Colgan-Ponder/88ec8232cea6e210341146297ad4892310ed4cb2
    [12]
    ATSUMI T, KOMARU A, OKAMOTO C. Genetic relationship among the Japanese pearl oyster Pinctada fucata martensii and other pearl oysters[J]. Fish Genet Breed Sci, 2004, 33(2): 135-142(in Japanese with English abstract).
    [13]
    喻达辉, 贾晓平, 朱嘉濠. 我国珠母贝属(Pinctada)主要种类亲缘关系的初步分析[J]. 海洋与湖沼, 2006, 37(3): 211-217. doi: 10.3321/j.issn:0029-814X.2006.03.004
    [14]
    喻达辉, 朱嘉濠. 珠母贝属的系统发育: 核rDNA ITS序列证据[J]. 生物多样性, 2005, 13(4): 315-323. doi: 10.3321/j.issn:1005-0094.2005.04.004
    [15]
    CHU K H, LI C P, HO H Y. The first internal transcribed spacer (ITS-1) of ribosomal DNA as a molecular marker for phylogenetic and population analyses in Crustacea[J]. Mar Biotechnol, 2001, 3(4): 355-361. doi: 10.1007/s10126001-0014-5
    [16]
    喻达辉, 李有宁, 吴开畅. 中国、日本和澳大利亚珍珠贝的ITS 2序列特征分析[J]. 南方水产, 2005, 1(2): 1-5. doi: 10.3969/j.issn.2095-0780.2005.02.001
    [17]
    VOS P, HOGERS R, BLEEKER M, et al. AFLP: a new technique for DNA fingerprinting[J]. Nucleic Acids Res, 1995, 23(21): 4407-4414. https://pubmed.ncbi.nlm.nih.gov/7501463/
    [18]
    THOMPSON J D, GIBSON T J, PLEWNIAK F, et al. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucleic Acids Res, 1997, 25(24): 4876-4882. https://pubmed.ncbi.nlm.nih.gov/9396791/
    [19]
    WHEELER D L, CHAPPEY C, LASH A E, et al. Database resources of the National Center for Biotechnolnology Information[J]. Nucleic Acids Res, 2000, 28(1): 10-14. https://pubmed.ncbi.nlm.nih.gov/33095870/
    [20]
    KUMAR S, TAMURA K, NEI M. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment[M]. [S. l. ]: Brief Bioinform, 2004, 5(2): 150-163.
    [21]
    SAITOU N, NEI M. The neighbour-joining method: a new method for reconstructing phylogenetic trees[J]. Mol Biol Evol, 1987, 4(4): 406-425. https://pubmed.ncbi.nlm.nih.gov/3447015/
    [22]
    TEMPLETON A R, CRANDALL K A, SING C F. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. Ⅲ Cladogram estimation[J]. Genet, 1992, 132(2): 619-633. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1205162/
    [23]
    SITNIKOVA T, RZHETSKY A, NEI M. Interior-branch and bootstrap tests of phylogenetic trees[J]. Mol Biol Evol, 1995, 12(2): 319-333. https://pubmed.ncbi.nlm.nih.gov/7700156/
    [24]
    NEI M, LI W H. Mathematical model for studying genetic variation in term of restriction endonucleases[J]. Proc Natl Acad Sci USA, 1979, 76(10): 5269-5273. https://pubmed.ncbi.nlm.nih.gov/291943/
    [25]
    ROZAS J, SÁNCHEZ-DELBARRIO J C, MESSEGUER X, et al. DnaSP, DNA polymorphism analyses by the coalescent and other methods[J]. Bioinformatics, 2003, 19: 2496-2497. https://pubmed.ncbi.nlm.nih.gov/14668244/
    [26]
    HUDSON R R, BOOS D D, KAPLAN N L. A statistical test for detecting geographic subdivision[J]. Mol Biol Evol, 1992, 9(1): 138-151. https://pubmed.ncbi.nlm.nih.gov/1552836/
    [27]
    SCHNEIDER S, ROESSLI D, EXCOFFIER L. Arlequin version 2.000: a software for population genetics data analysis[M]. [S. l. ]: Genetics and Biometry Laboratory, University of Geneva, Switzerland, 2000
    [28]
    RAYMOND M, ROUSSET F. An exact test for population differentiation[J]. Evolution, 1995, 49(12): 1280-1283. doi: 10.1111/j.1558-5646.1995.tb04456.x
    [29]
    EXCOFFIER L, SMOUSE P E, QUATTRO J M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: applications to human mitochondrial DNA restriction data[J]. Genet, 1992, 131(2): 479-491. https://pubmed.ncbi.nlm.nih.gov/1644282/
    [30]
    BANDELT H J, FORSTER P, SYKES B C, et al. Mitochondrial portraits of human populations[J]. Genet, 1995, 141(2): 743-753. doi: 10.1093/genetics/141.2.743
    [31]
    POLZIN T, DANESCHMAND S V. On Steiner trees and minimum spanning trees in hypergraphs[J]. Operations Res Lett, 2003, 31(1): 12-20. https://www.sciencedirect.com/science/article/pii/S0167637702001852
    [32]
    KOVACH W L. A multivariate statistical package for windows, ver 3.1[M]. [S. l. ]: Kovach Computing Services, Pentraeth, UK, 1999.
    [33]
    蒙钊美, 李有宁, 邢孔武. 珍珠养殖理论与技术[M]. 北京: 科学出版社, 1996: 253.
    [34]
    O'CONNOR W A, LAWLER N F. Reproductive condition of the pearl oyster, Pinctada imbricata, Röding, in Port Stephens, New South Wales, Australia[J]. Aquac Res, 2004, 35(4): 385-396. doi: 10.1111/j.1365-2109.2004.01027.x
    [35]
    HILLIS D M, DIXON M T. Ribosomal DNA: Molecular evolution and phylogenetic inference[J]. Q Rev Biol, 1991, 66(5): 411-453. https://pubmed.ncbi.nlm.nih.gov/1784710/
    [36]
    BEAUCHAMP K A, POWERS D A. Sequence variation of the first internal transcribed spacer (ITS-1) of ribosomal DNA in ahermatypic corals from California[J]. Mol Mar Biol Biotech, 1996, 5(5): 357-362. https://pubmed.ncbi.nlm.nih.gov/8983201/#:~:text=An%20approximately%20300-bp%20region%20of%20the%20ITS-1%20was,same%20region%20from%20the%20hermatypic%20coral%20Favia%20lizardensis.
    [37]
    HEDGECOCK D, LI G, BANKS M A, et al. Occurrence of the Kumamoto oyster Crassostrea sikamea in the Ariake Sea, Japan[J]. Mar Biol, 1999, 133(1): 65-68. doi: 10.1007/s002270050443
    [38]
    VAN OPPEN M J H, WILLIS B L, VAN VUGT H W J A, et al. Examination of species boundaries in the Acropora cervicornis group (Scleractinia, Cnidaria) using nuclear DNA sequence analyses[J]. Mol Ecol, 2000, 9(8): 1363-1373. https://researchonline.jcu.edu.au/12964/
    [39]
    CHEN C A, CHEN C P, FAN T Y, et al. Nucleotide sequences of ribosomal internal transcribed spacers and their utility in distinguishing closely related Perinereis polychaetes (Annelida; Polychaeta; Nereididae)[J]. Mar Biotech, 2002, 4(1): 17-29. doi: 10.1007/s10126-001-0069-3
    [40]
    LÓPEZ-PIÑÓN M J, INSUA A, MÉNDEZ J. Identification of four scallop species using PCR and restriction analysis of the ribosomal DNA internal transcribed spacer region[J]. Mar Biotech, 2002, 4(5): 495-502. doi: 10.1007/s10126-002-0030-0
    [41]
    VOLLMER S V, PALUMBI S R. Testing the utility of internally transcribed spacer sequences in coral phylogenetics[J]. Mol Ecol, 2004, 13(9): 2763-2772. https://pubmed.ncbi.nlm.nih.gov/15315687/
    [42]
    ANDERSON T J, ADLARD R D. Nucleotide sequence of a rDNA internal transcribed spacer supports synonymy of Saccostrea commercialis and S. glomerata[J]. J Moll Stud, 1994, 60(3): 196-197. https://academic.oup.com/mollus/article-abstract/60/2/196/1004505
    [43]
    HARRIS D J, CRANDALL, K A. Introgenomic variation within ITS1 and ITS2 of freshwater crayfishes (Decapoda: Cambaridae): Implications for phylogenetic and microsatellite studies[J]. Mol Biol Evol, 2000, 17(2): 284-291. https://academic.oup.com/mbe/article/17/2/284/1001859
    [44]
    LIU Z J, CORDES J F. DNA marker technologies and their applications in aquaculture genetics [J]. Aquac, 2004, 238(1): 1-37. https://www.sciencedirect.com/science/article/pii/S0044848604002856
    [45]
    MARIETTE S, CORRE L E, AUSTERLITZ F, et al. Sampling within the genome for measuring within-population diversity: trade-offs between markers[J]. Mol Ecol, 2002, 11(8): 1145-1156. doi: 10.1046/j.1365-294x.2002.01519.x
    [46]
    LOPEZ J V, KERSANACH R, REHNER S A, et al. Molecular determination of species boundaries in corals: genetic analysis of the Montastrea annularis complex using amplified length polymorphism and a microsatellite marker[J]. Biol Bull, 1999, 196(1): 80-93.
    [47]
    KAI Y, NAKAYAMA K, NAKABO T. Genetic differences among three colour morphotypes of the black rockfish, Sebastes inermis, inferred from mtDNA and AFLP analyses[J]. Mol Ecol, 2002, 11(12): 2591-2598. doi: 10.1007/s102280200037
    [48]
    OGDEN R, THORPE R S. The usefulness of amplified fragment length polymorphism markers for taxon discrimination across graduated fine evolutionary levels in Caribbean Anolis lizards[J]. Mol Ecol, 2002, 11(3): 437-445. doi: 10.1023/B:HYDR.0000041613.30678.56
    [49]
    YOUNG W P, OSTBERG C O, KEIM P, et al. Genetic characterization of hybridization and introgression between anadromous rainbow trout (Oncorhynchus mykiss irideus) and coastal cutthroat trout (O. clarki clarki)[J]. Mol Ecol, 2001, 10(4): 921-930. doi: 10.1046/j.1365-294x.2001.01247.x
    [50]
    MASAOKA T, KOBAYASHI T. Species identification of Pinctada imbricata using intergenic spacer of nuclear ribosomal RNA genes and mitochondrial 16S ribosomal RNA gene regions[J]. Fish Sci, 2005, 71(4): 837-846. doi: 10.1111/j.1444-2906.2005.01035.x
  • Related Articles

    [1]ZHANG Kexin, LUO Zexin, ZHANG Yuan, ZHAN Jianqiang, LU Yining, LIU Zhigang. Study on large-scale artificial seedling breeding technology of Tapes dorsatus[J]. South China Fisheries Science, 2023, 19(3): 51-59. DOI: 10.12131/20220262
    [2]CUI Ke, YANG Qibin, MA Zhenhua. Ingestion, digestion and food selection of crimson snapper(Lutjanus erythopterus) larvae and juveniles[J]. South China Fisheries Science, 2018, 14(6): 43-51. DOI: 10.12131/20180114
    [3]DONG Zaijie, LIU Nian, FU Jianjun, ZHU Wenbin, WANG Lanmei, SU Shengyan. Genetic analysis for six wild and selection populations of common carp (Cyprinus carpio) using microsatellites[J]. South China Fisheries Science, 2018, 14(4): 46-55. DOI: 10.3969/j.issn.2095-0780.2018.04.006
    [4]SHEN Xiashuang, AO Qiuwei, GAN Xi, TANG Yun, LUO Yongju, LIANG Junneng, ZHU Jiajie. Estimation of disease resistance and growth in F5 generation families of GIFT tilapia[J]. South China Fisheries Science, 2018, 14(3): 83-90. DOI: 10.3969/j.issn.2095-0780.2018.03.010
    [5]YUAN Ruipeng, LIU Jianyong, ZHANG Jiachen, CHEN Xiaoming, ZHENG Jingjing. Selection response and heritability of growth and high ammonia nitrogen tolerance in Litopenaeus vannamei[J]. South China Fisheries Science, 2017, 13(3): 83-89. DOI: 10.3969/j.issn.2095-0780.2017.03.011
    [6]TANG Shoujie, BI Xiang, WANG Chenghui, ZHANG Feiming, ZHANG Youliang, XIE Zhiqiang. Genetic potential analysis of three selective breeding populations of blunt snout bream (Megalobrama amblycephala) using microsatellite markers[J]. South China Fisheries Science, 2017, 13(2): 59-68. DOI: 10.3969/j.issn.2095-0780.2017.02.008
    [7]WANG Lanmei, ZHU Wenbin, DONG Zaijie, SU Shengyan, FU Jianjun, YAN Mingxin, LIU Nian. Differential analysis on growth of FFRC strain common carp (Cyprinus carpio) selection families at various culture stages[J]. South China Fisheries Science, 2017, 13(1): 43-49. DOI: 10.3969/j.issn.2095-0780.2017.01.006
    [8]JIANG Xiang, LIU Jianyong, LAI Zhifu. Selective responses and realized heritability estimation for a cultured Haliotis diversicolor aquatili population[J]. South China Fisheries Science, 2013, 9(2): 9-13. DOI: 10.3969/j.issn.2095-0780.2013.02.002
    [9]XIE Xiaoyong, ZHONG Jinxiang, LI Sifa, CAI Wanqi, ZHANG Hanhua, YE Wei, CHEN Huichong. Comparison of growth performance of F6, F7 and F8 of GIFT strain Oreochromis niloticus[J]. South China Fisheries Science, 2009, 5(1): 48-53. DOI: 10.3969/j.issn.1673-2227.2009.01.008
    [10]HAO Zhi-ming, WU Yan-yan, LI Lai-hao. A selection of enzyme in the Tilapia internal organs[J]. South China Fisheries Science, 2006, 2(2): 38-42.

Catalog

    Article views (5192) PDF downloads (3045) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return