GAO Shang, LI Yuefei, LI Jie, CHEN Weitao. Genetic structure and demographic history of Mastacembelus armatus in southern China[J]. South China Fisheries Science, 2023, 19(2): 42-49. DOI: 10.12131/20220200
Citation: GAO Shang, LI Yuefei, LI Jie, CHEN Weitao. Genetic structure and demographic history of Mastacembelus armatus in southern China[J]. South China Fisheries Science, 2023, 19(2): 42-49. DOI: 10.12131/20220200

Genetic structure and demographic history of Mastacembelus armatus in southern China

More Information
  • Received Date: July 19, 2022
  • Revised Date: August 16, 2022
  • Accepted Date: September 07, 2022
  • Available Online: September 21, 2022
  • In order to understand the genetic resources of Mastacembelus armatus populations in southern China, and to provide an important scientific basis for their management and protection, we collected 140 individuals from 16 geographical populations from seven independent river systems in southern China and sequenced two mitochondrial genes (COI and Cytb) via PCR amplification and Sanger sequencing, and finally revealed the genetic structure and demographic history of M. armatus populations by phylogenetic analysis, haplotype network, population genetic analysis and Bayesian skyline plot. The results show that M. armatus populations consisted of three lineages (I, II and III) and split between 0.596 and 0.676 million years ago (Ma). Haplotype network shows that there was a common domain distribution among different lineages, and suggests that there might be two diffusion routes between Hainan Island population and mainland population. Population genetic analysis finds significant genetic differentiation (FST=0.676, P<0.001) and isolation by distance pattern (R=0.463, P=0.001) among M. armatus populations, implying that spatial distance was an important factor for genetic differentiation of M. armatus. Demographic analysis shows that M. armatus populations experienced population expansion at 0.025 Ma.
  • [1]
    郑慈英. 珠江鱼类志[M]. 北京: 科学出版社, 1989: 371-372.
    [2]
    周解, 张春光. 广西淡水鱼类志[M]. 2版. 南宁: 广西人民出版社, 2006: 489-499.
    [3]
    朱元鼎. 福建鱼类志[M]. 福州: 福建科学技术出版社, 1985: 447-448.
    [4]
    林煜, 樊海平, 陈斌, 等. 大刺鳅致病性维氏气单胞菌分离鉴定及药物敏感性研究[J]. 农学学报, 2019, 9(11): 50-56. doi: 10.11923/j.issn.2095-4050.cjas19010028
    [5]
    杨华强, 李强, 舒琥, 等. 华南及邻近地区大刺鳅遗传多样性的ISSR分析[J]. 水生生物学报, 2016, 40(1): 63-70. doi: 10.7541/2016.9
    [6]
    李捷, 李新辉, 贾晓平, 等. 西江鱼类群落多样性及其演变[J]. 中国水产科学, 2010, 17(2): 298-311.
    [7]
    初庆柱, 陈刚, 张健东, 等. 大刺鳅消化系统的组织学研究[J]. 淡水渔业, 2009, 39(2): 14-18. doi: 10.3969/j.issn.1000-6907.2009.02.003
    [8]
    薛凌展. 大刺鳅胚胎发育观察[J]. 淡水渔业, 2014, 44(2): 101-104. doi: 10.3969/j.issn.1000-6907.2014.02.020
    [9]
    张建铭, 曾庆祥, 刘斌, 等. 大刺鳅人工繁殖技术初探[J]. 中国水产, 2015(9): 85-86. doi: 10.3969/j.issn.1002-6681.2015.09.031
    [10]
    林伟强, 廖显平, 陈挺, 等. 大刺鳅人工繁殖技术研究[J]. 海洋与渔业, 2016(7): 50-53.
    [11]
    房祖业, 陈晓东, 吴咏诗, 等. 大刺鳅 (Mastacembelus armatus) 二、三、四碱基重复微卫星标记的筛选和特征分析[J]. 海洋与湖沼, 2018, 49(1): 174-182.
    [12]
    李芬, 陈绮萍, 何佩莹, 等. 北江大刺鳅 (Mastacembelus armatus) 的核型分析及线粒体Cytb基因和D-loop的遗传多样性[J]. 海洋与湖沼, 2019, 50(2): 449-454. doi: 10.11693/hyhz20181100275
    [13]
    江小璐. 华南及邻近地区不同群体大刺鳅的遗传多样性及亲缘地理研究[D]. 广州: 广州大学, 2018: 1-90.
    [14]
    BERMINGHAM E, MORITZ C. Comparative phylogeography: concepts and applications[J]. Mol Ecol, 1998(7): 367-369.
    [15]
    MÉDAIL F, BAUMEL A. Using phylogeography to define conservation priorities: the case of narrow endemic plants in the Mediterranean Basin hotspot[J]. Biol Conserv, 2018, 224: 258-266. doi: 10.1016/j.biocon.2018.05.028
    [16]
    卢彦, 廖庆玉, 李靖. 岛屿生物地理学理论与保护生物学介绍[J]. 广州环境科学, 2011, 26(1): 10-12.
    [17]
    CHEN W, LI C, CHEN F, et al. Phylogeographic analyses of a migratory freshwater fish (Megalobrama terminalis) reveal a shallow genetic structure and pronounced effects of sea-level changes[J]. Gene, 2020, 737: 144478. doi: 10.1016/j.gene.2020.144478
    [18]
    YANG J Q, HSU K C, LIU Z Z, et al. The population history of Garra orientalis (Teleostei: Cyprinidae) using mitochondrial DNA and microsatellite data with approximate Bayesian computation[J]. BMC Evol Biol, 2016, 16(1): 73. doi: 10.1186/s12862-016-0645-9
    [19]
    GASCOYNE M, BENJAMIN G J, SCHWARCZ H P, et al. Sea-level lowering during the illinoian glaciation: evidence from a Bahama "blue hole"[J]. Science, 1979, 205(4408): 806-808. doi: 10.1126/science.205.4408.806
    [20]
    WANG P, LI Q. The South China Sea[J]. Dev Paleoenviron Res, 2009, 30: 165-178.
    [21]
    WARD R, ZEMLAK T, INNES B, et al. DNA barcoding Australia's fish species[J]. Philos Trans B, 2005, 360(1462): 1847-1857. doi: 10.1098/rstb.2005.1716
    [22]
    SAN M D, GOWER D J, OOMMEN O V, et al. Phylogeny of Caecilian amphibians (Gymnophiona) based on complete mitochondrial genomes and nuclear RAG1[J]. Mol Phylogenet Evol, 2004, 33(2): 413-427. doi: 10.1016/j.ympev.2004.05.014
    [23]
    BROWN K J, RÜBER L, BILLS R, et al. Mastacembelid eels support Lake Tanganyika as an evolutionary hotspot of diversification[J]. BMC Evol Biol, 2010, 10: 188. doi: 10.1186/1471-2148-10-188
    [24]
    EDGAR R C. MUSCLE: multiple sequence alignment with high accuracy and high throughput[J]. Nucleic Acids Res, 2004, 32(5): 1792-1797. doi: 10.1093/nar/gkh340
    [25]
    TAMURA K, STECHER G, PETERSON D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0[J]. Mol Biol Evol, 2013, 30(12): 2725-2729. doi: 10.1093/molbev/mst197
    [26]
    DRUMMOND A J, RAMBAUT A. BEAST: Bayesian evolutionary analysis by sampling trees[J]. BMC Evol Biol, 2007, 7(1): 214. doi: 10.1186/1471-2148-7-214
    [27]
    SWOFFORD D L. PAUP*: Phylogenetic analysis using parsimony (*and other methods) version 4. Sinauer, Sunderland, Massachusetts, USA[J]. Nat Biotechnol, 2003, 18: 233-234.
    [28]
    NYLANDER J A A. MrModeltest v2. Program distributed by the author[M]. Uppsala: Evolutionary Biology Centre, Uppsala University, 2004.
    [29]
    LEIGH J W, BRYANT D. PopART: full-feature software for haplotype network construction[J]. Methods Ecol Evol, 2015, 6(9): 1110-1116. doi: 10.1111/2041-210X.12410
    [30]
    JODY H. Isolation with migration models for more than two populations[J]. Mol Biol Evol, 2010, 27(4): 905-920. doi: 10.1093/molbev/msp296
    [31]
    向登高, 李跃飞, 李新辉, 等. 多基因联合揭示海南鲌的遗传结构与遗传多样性[J]. 生物多样性, 2021, 29(11): 1505-1512. doi: 10.17520/biods.2021166
    [32]
    AMIRUL J, JAMALUDDIN F, NAM S, et al. Genetic variation, demographic history and phylogeography of tire track eel, Mastacembelus favus (Synbranchiformes: Mastacembelidae) in Southeast Asia[J]. Hydrobiologia, 2019, 838(1): 163-182. doi: 10.1007/s10750-019-03987-3
    [33]
    KIMURA M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences[J]. J Mol Evol, 1980, 16(2): 111-120. doi: 10.1007/BF01731581
    [34]
    LIBRADO P, ROZAS R. DnaSP ver. 5: a software for comprehensive analyses of DNA polymorphism data[J]. Bioinformatics, 2009, 25: 1451-1452. doi: 10.1093/bioinformatics/btp187
    [35]
    EXCOFFIER L, LISCHER H E L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows[J]. Mol Ecol Resour, 2010, 10(3): 564-567. doi: 10.1111/j.1755-0998.2010.02847.x
    [36]
    TAJIMA F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism.[J]. Genetics, 1989, 123(3): 585-595. doi: 10.1093/genetics/123.3.585
    [37]
    YANG J, YANG J X, CHEN X Y. A re-examination of the molecular phylogeny and biogeography of the genus Schizothorax (Teleostei: Cyprinidae) through enhanced sampling, with emphasis on the species in the Yunnan-Guizhou Plateau, China[J]. J Zool Syst Evol Res, 2012, 50(50): 184-191.
    [38]
    CHEN X L, CHIANG T Y, LIN H D, et al. Mitochondrial DNA phylogeography of Glyptothorax fokiensis and Glyptothorax hainanensis in Asia[J]. J Fish Biol, 2010, 70(sa): 75-93.
    [39]
    LIN H D, KUO P H, WANG W K, et al. Speciation and differentiation of the genus Opsariichthys (Teleostei: Cyprinidae) in East Asia[J]. Biochem Syst Ecol, 2016(68): 92-100.
    [40]
    ZONG Y, YIM W S, YU F, et al. Late quaternary environmental changes in the Pearl River mouth region, China[J]. Quatern Int, 2009, 206(1/2): 35-45.
    [41]
    YANG L, HE S P. Phylogeography of the freshwater catfish Hemibagrus guttatus (Siluriformes, Bagridae): implications for South China biogeography and influence of sea-level changes[J]. Mol Phylogenet Evol, 2008, 49(1): 393-398. doi: 10.1016/j.ympev.2008.05.032
    [42]
    赵亚辉, 张春光. 广西十万大山地区的鱼类区系及其动物地理学分析[J]. 生物多样性, 2001(4): 336-344. doi: 10.3321/j.issn:1005-0094.2001.04.003
    [43]
    WRIGHT S. Variability within and among natural populations[M]. Chicago: The University of Chicago Press, 1978: 79-103.
    [44]
    WRIGHT S. Isolation by distance[J]. Genetics, 1943, 28: 114-138. doi: 10.1093/genetics/28.2.114
    [45]
    LIN M H, LIANG X F, GAO J J, et al. Phylogeographic structure and population demography of the leopard mandarin fish (Siniperca scherzeri) in the Pearl River drainage[J]. Environ Biol Fish, 2022, 105(4): 477-486. doi: 10.1007/s10641-022-01247-3

Catalog

    Article views (643) PDF downloads (72) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return