Citation: | LIU Yongxin, LIU Yi, LIU Yingjie, YANG Runqing. Allometric analysis of body weight and morphological traits for Japanese flounder(Paralichthys olivaceus)[J]. South China Fisheries Science, 2016, 12(1): 36-42. DOI: 10.3969/j.issn.2095-0780.2016.01.006 |
To analyze the genetic rule of allometry between body weight and morphological traits for Japanese flounder (Paralichthys olivaceus), we established 19 full-sib families by artificial insemination to observe their body weights and morphological traits at different days of age. We constructed the optimal joint allometry model by stepwise regression method which was then nested into the fixed and genetic effects of animal model for body weight. Furthermore, we analyzed the genetic rules of allometry for multiple morphological traits. The allometric index between body weight and total length presented positive allometry with maximum value of 1.415 5. The allometric index between residual morphological traits and body weight ranged from 0.061 5 to 0.718 0, showing negative allometry. The maximum positive genetic correlation of allometric index between total length and caudal peduncle depth reached 0.907 8, while the highest negative genetic correlation existed between total length and caudal peduncle length (-0.946 8). Comparing different models by the statistic criteria, Model Ⅰ is the optimal regression model for dynamic allometric analysis.
[1] |
雷霁霖. 海水鱼类养殖理论与技术[M]. 北京: 中国农业出版社, 2005: 482-483. https://xueshu.baidu.com/usercenter/paper/show?paperid=2b3b35b9feeb760b39ab1753e08e1a1d&site=xueshu_se
|
[2] |
刘永新, 周勤, 张红涛, 等. 红鳍东方鲀(Takifugu rubripes)生长性状的遗传参数估计[J]. 渔业科学进展, 2014, 35(6): 39-44. https://xueshu.baidu.com/usercenter/paper/show?paperid=f1f1d7b11fdf3dc6651317f8b489e4a1&site=xueshu_se&hitarticle=1
|
[3] |
SHIKANO T. Quantitative genetic parameters for growth-related and morphometric traits of hatchery-produced Japanese flounder Paralichthys olivaceus in the wild[J]. Aquac Res, 2007, 38(12): 1248-1253. doi: 10.1111/j.1365-2109.2007.01749.x
|
[4] |
SHIKANO T. Estimation of quantitative genetic parameters using marker-inferred relatedness in Japanese flounder: a case study of upward bias[J]. J Hered, 2008, 99(2): 94-104. https://xueshu.baidu.com/usercenter/paper/show?paperid=d2606809e4e3e877e593ad588bb1eaea&site=xueshu_se&hitarticle=1
|
[5] |
SHIMADA Y, SHIKANO T, MURAKAMI N, et al. Maternal and genetic effects on individual variation during early development in Japanese flounder Paralichthys olivaceus[J]. Fish Sci, 2007, 73(2): 244-249. https://xueshu.baidu.com/usercenter/paper/show?paperid=e8a8860b0acdaaa84d42103abd8e1d32&site=xueshu_se&hitarticle=1
|
[6] |
LIU Y X, LI J, LIU H J, et al. Phenotypic and genetic parameter estimation of morphological traits related to axial body growth in Japanese flounder[J]. Fish Sci, 2014, 80(2): 317-321. doi: 10.1007/s12562-014-0704-3
|
[7] |
LIU Y X, WANG G X, WANG Y F, et al. Estimation of genetic parameters for growth traits of Japanese flounder Paralichthys olivaceus using an animal model[J]. Fish Sci, 2011, 77(1): 87-93. doi: 10.1007/s12562-010-0311-x
|
[8] |
EGSET C K, BOLSTAD G H, ROSENQVIST G, et al. Geographical variation in allometry in the guppy (Poecilia reticulata)[J]. J Evol Biol, 2011, 24(12): 2631-2638. doi: 10.1111/j.1420-9101.2011.02387.x
|
[9] |
GAO H J, LIU Y X, ZHANG T T, et al. Statistical models for jointly analyzing multiple allometries[J]. J Theor Biol, 2013, 318(2): 205-209. https://xueshu.baidu.com/usercenter/paper/show?paperid=018d6fe833279f5968e5b29921a64699&site=xueshu_se&hitarticle=1
|
[10] |
NIKLAS K J. A phyletic perspective on the allometry of plant biomass-partitioning patterns and functionally equivalent organ-categories[J]. New Phytol, 2006, 171(1): 27-40. doi: 10.1111/j.1469-8137.2006.01760.x
|
[11] |
WEST G B, BROWN J H. The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization[J]. J Exp Biol, 2005, 208(9): 1575-1592. doi: 10.1242/jeb.01589
|
[12] |
PÉLABON C, BOLSTAD G H, EGSET C K, et al. On the relationship between ontogenetic and static allometry[J]. Am Nat, 2013, 181(2): 195-212. doi: 10.1086/668820
|
[13] |
PÉLABON C, FIRMAT C, BOLSTAD G H, et al. Evolution of morphological allometry[J]. Ann N Y Acad Sci, 2014, 1320(7): 58-75. https://xueshu.baidu.com/usercenter/paper/show?paperid=b0406a38a8b6c51dfb3a1ea512829dcb&site=xueshu_se&hitarticle=1
|
[14] |
VOJE K L, HANSEN T F, EGSET C K, et al. Allometric constraints and the evolution of allometry[J]. Evolution, 2014, 68(3): 866-885. doi: 10.1111/evo.12312
|
[15] |
VOJE K L, HANSEN T F. Evolution of static allometries: adaptive change in allometric slopes of eye span in stalk-eyed flies[J]. Evolution, 2013, 67(2): 453-467. https://pubmed.ncbi.nlm.nih.gov/23356617/
|
[16] |
EGSET C K, HANSEN T F, Le ROUZIC A, et al. Artificial selection on allometry: change in elevation but not slope[J]. J Evol Biol, 2012, 25(5): 938-948. doi: 10.1111/j.1420-9101.2012.02487.x
|
[17] |
FRANKINO W A, ZWAAN B J, STERN D L, et al. Natural selection and developmental constraints in the evolution of allometries[J]. Science, 2005, 307(5710): 718-720. doi: 10.1126/science.1105409
|
[18] |
MCGUIGAN K, NISHIMURA N, CURREY M, et al. Quantitative genetic variation in static allometry in the threespine stickleback[J]. Integr Comp Biol, 2010, 50(6): 1067-1080. doi: 10.1093/icb/icq026
|
[19] |
LI H, HUANG Z, GAI J, et al. A conceptual framework for mapping quantitative trait loci regulating ontogenetic allometry[J]. PLoS One, 2007, 2(11): e1245. doi: 10.1371/journal.pone.0001245
|
[20] |
WU R L, HOU W. A hyperspace model to decipher the genetic architecture of developmental processes: allometry meets ontogeny[J]. Genetics, 2006, 172(1): 627-637. doi: 10.1534/genetics.105.045310
|
[21] |
MOUTOPOULOS D K, STERGIOU K I. Length-weight and length-length relationships of fish species from the Aegean Sea (Greece)[J]. J Appl Ichthyol, 2002, 18(3): 200-203. doi: 10.1046/j.1439-0426.2002.00281.x
|
[22] |
MENDES B, FONSECA P, CAMPOS A. Weight-length relationships for 46 fish species of the Portuguese West coast[J]. J Appl Ichthyol, 2004, 20(5): 355-361. doi: 10.1111/j.1439-0426.2004.00559.x
|
[23] |
徐海龙, 谷德贤, 乔秀亭, 等. 渤海湾主要渔业资源长度与体质量关系分析[J]. 南方水产科学, 2014, 10(1): 57-63. doi: 10.3969/j.issn.2095-0780.2014.01.009
|
[24] |
詹金绵, 王炳谦, 谷伟, 等. 虹鳟体质量和主要体尺性状异速生长的遗传分析[J]. 中国水产科学, 2015, 22(1): 60-67. https://xueshu.baidu.com/usercenter/paper/show?paperid=236e5a3663fa69ab59a8591e817c96cc&site=xueshu_se&hitarticle=1
|
[25] |
马境, 章龙珍, 庄平, 等. 施氏鲟仔鱼发育及异速生长模型[J]. 应用生态学报, 2007, 18(12): 2875-2882. https://xueshu.baidu.com/usercenter/paper/show?paperid=c81fd4ad5df887284c2907c877aa7f1a&site=xueshu_se&hitarticle=1
|
[26] |
HUYSENTRUYT F, MOERKERKE B, DEVAERE S A. Early development and allometric growth in the armoured catfish Corydoras aeneus (Gill, 1858)[J]. Hydrobiologia, 2009, 627(1): 45-54. doi: 10.1007/s10750-009-9714-z
|
[27] |
庄平, 宋超, 章龙珍, 等. 全人工繁殖西伯利亚鲟仔稚鱼发育的异速生长[J]. 生态学杂志, 2009, 28(4): 681-687. https://xueshu.baidu.com/usercenter/paper/show?paperid=36c48af570471c887883aac50173ba9a&site=xueshu_se
|
[28] |
单秀娟, 窦硕增.𩾃鱼(Miichthys miiuy)仔、稚鱼发育生长方式及其生态学意义[J]. 海洋与湖沼, 2009, 40(6): 714-719. doi: 10.3321/j.issn:0029-814X.2009.06.007
|
[29] |
何勇凤, 吴兴兵, 朱永久, 等. 鲈鲤仔鱼的异速生长模式[J]. 动物学杂志, 2013, 48(1): 8-15. https://xueshu.baidu.com/usercenter/paper/show?paperid=971910da8340109638c119b70e3ee2b6&site=xueshu_se&hitarticle=1
|
[30] |
席丹, 张秀梅, 吕红健, 等. 许氏平鲉早期异速生长模式的研究[J]. 中国海洋大学学报(自然科学版), 2014, 44(12): 28-34. https://xueshu.baidu.com/usercenter/paper/show?paperid=cffe3b7140addcb5f8b849020c6d29c8&site=xueshu_se&hitarticle=1
|
[31] |
雷舒涵, 张秀梅, 张沛东, 等. 金乌贼的早期生长发育特征[J]. 中国水产科学, 2014, 21(1): 37-43. https://xueshu.baidu.com/usercenter/paper/show?paperid=0ae04b8a28e93bbced72b6d76283ae68&site=xueshu_se&hitarticle=1
|
[32] |
陈方灿, 李新辉, 李捷, 等. 珠江肇庆江段赤眼鳟开口后仔、稚鱼的异速生长分析[J]. 广东农业科学, 2015(3): 103-109. doi: 10.3969/j.issn.1004-874X.2015.03.023
|
[1] | LI Bingbu, WANG Guixing, ZHANG Xiaoyan, LIU Yufeng, HE Zhongwei, CAO Wei, REN Jiangong, REN Yuqin, ZHANG Yitong, SAN Lize, WANG Yufen, HOU Jilun. Association analysis of SNPs polymorphisms in mstn gene of Paralichthys olivaceus with growth traits[J]. South China Fisheries Science, 2024, 20(2): 119-128. DOI: 10.12131/20230165 |
[2] | YU Wei, LIN Heizhao, MA Zhenhua, WU Qia'er, CHEN Xueqing, YANG Yukai, HUANG Xiaolin, HUANG Zhong, ZHAO Wang, LI Tao, ZHOU Chuanpeng. Mathematical analysis of morphometric attributes effects on body mass for four-month-old Plectropomus leopardus[J]. South China Fisheries Science, 2022, 18(6): 146-151. DOI: 10.12131/20210253 |
[3] | WU Xinyan, LIANG Hongwei, LUO Xiangzhong, SHA Hang, ZOU Guiwei. Effects of morphological traits on body mass of Changfeng silver carp (Hypophthalmichthys molitrix) at different ages[J]. South China Fisheries Science, 2021, 17(3): 62-69. DOI: 10.12131/20200265 |
[4] | FANG Wei, ZHOU Shengjie, ZHAO Wang, YANG Rui, HU Jing, YU Gang, MA Zhenhua. Correlation and path analysis of morphological traits to body mass of juvenile Thunnus albacores[J]. South China Fisheries Science, 2021, 17(1): 52-58. DOI: 10.12131/20200158 |
[5] | CHEN Jian, GUO Dan, ZHAI Ziqing, YU Dahui, BAI Lirong. Correlation analysis of morphological traits and body mass traits of Coelomactra antiquata[J]. South China Fisheries Science, 2021, 17(1): 45-51. DOI: 10.12131/20200180 |
[6] | ZHOU Falin, YANG Qibin, JIANG Song, YANG Lishi, LI Yundong, HUANG Jianhua, JIANG Shigui. Analysis of combining ability and heterosis on body mass trait of three Penaeus monodon populations[J]. South China Fisheries Science, 2021, 17(1): 39-44. DOI: 10.12131/20200157 |
[7] | LI Junwei, OU Youjun, WEN Jiufu, HU Ruiping, ZHU Changbo, LAN Junnan, LI Jia'er, ZHOU Hui. Correlation among growth performance, morphological traits and body mass of Eleutherollema tetradactyuulum cultured in indoor circulating aquaculture system and aquaculture pond[J]. South China Fisheries Science, 2020, 16(1): 27-35. DOI: 10.12131/20190155 |
[8] | WU Shuiqing, ZHENG Leyun, LUO Huiyu, HUANG Zhongchi, LIN Kebing, QIU Fengyan, WU Jingling, LIN Jinbo. Comparison of morphological traits of hybrid groupers (Epinephelus coioides♀×E.akaara♂) and their parents[J]. South China Fisheries Science, 2017, 13(5): 47-54. DOI: 10.3969/j.issn.2095-0780.2017.05.007 |
[9] | CHEN Mingqiang, LIU Baosuo, YAN Junxian, GUO Huayang, WU Kaichang, LI Youning. Comparison analysis of major traits among four shell color selective lines of pearl oyster (Pinctada fucata)[J]. South China Fisheries Science, 2016, 12(5): 118-122. DOI: 10.3969/j.issn.2095-0780.2016.05.015 |
[10] | TAN Caigang, LIU Baosuo, ZHANG Dongling, NIU Zhikai, ZHANG Bo, CHEN Mingqiang, FAN Sigang, JIANG Song, HUANG Guiju, LI Youning, CHEN Suwen, YU Dahui. Analysis of grey relationship between morphological traits and body weight of pearl oyster (Pinctada fucata)[J]. South China Fisheries Science, 2015, 11(2): 35-40. DOI: 10.3969/j.issn.2095-0780.2015.02.005 |
1. |
姜晓娜,胡雪松,石潇丹,葛彦龙,李池陶,程磊,石连玉,贾智英. 不同月龄镜鲤“龙科11号”形态性状对体质量的通径分析. 水产学杂志. 2024(06): 59-65+103 .
![]() | |
2. |
刘康,韦玲静,张盛,莫飞龙,卢玉典,杨宾兰,甘宝江,廖愚,肖珊. 不同规格百色黑鲤的形态性状与体质量的相关性及通径分析. 江西水产科技. 2024(06): 10-15 .
![]() | |
3. |
刘艳超,陈锋,魏聪,李建川. 2种规格弧唇裂腹鱼幼鱼形态性状对体质量的相关性及通径分析. 安徽农学通报. 2022(06): 98-101 .
![]() | |
4. |
胡静,周胜杰,杨蕊,陈旭,杨其彬,马振华. 眼斑双锯鱼仔稚鱼发育异速生长. 水生生物学报. 2020(04): 844-852 .
![]() | |
5. |
李振通,田永胜,唐江,成美玲,马文辉,庞尊方,李文升,刘江春,王晓梅,翟介明. 云龙石斑鱼与云纹石斑鱼、珍珠龙胆石斑鱼的生长性状及对比分析. 水产学报. 2019(04): 1005-1017 .
![]() | |
6. |
苟盼盼,王秀利,窦冬雨,荆笛,刘圣聪,刘福君,刘海金,杨君,孟雪松,仇雪梅. 红鳍东方鲀不同家系群体的形态性状差异与相关性分析. 大连海洋大学学报. 2019(05): 674-679 .
![]() | |
7. |
赵旺,江淼,陈明强,林凤昊,杨蕊,于刚,孟祥君,马振华. 离岸养殖与陆基养殖尖吻鲈形态性状与体质量的相关性研究. 海洋学报. 2018(08): 53-62 .
![]() | |
8. |
赵旺,杨蕊,胡静,杨其彬,马振华,于刚. 5月龄斜带石斑鱼形态性状对体质量影响的通径分析. 大连海洋大学学报. 2017(05): 557-562 .
![]() | |
9. |
赵旺,胡静,马振华,于刚,杨蕊,王理. 尖吻鲈幼鱼形态性状对体质量影响的通径分析及生长曲线拟合. 南方农业学报. 2017(09): 1700-1707 .
![]() | |
10. |
赵旺,于刚,王江勇,严俊贤,杨蕊,吴开畅. 7月龄方斑东风螺形态性状对体质量的通径分析. 海洋科学. 2017(11): 82-88 .
![]() | |
11. |
王兰梅,朱文彬,董在杰,苏胜彦,傅建军,阎明信,刘念. 福瑞鲤选育家系不同养殖阶段的生长差异分析. 南方水产科学. 2017(01): 43-49 .
![]() |