SHI Rongjun, LI Zhihong, ZHOU Linbin, TAN Yehui. Influence of dissolved aluminum on marine phytoplankton community structure and growth of Synechococcus sp.[J]. South China Fisheries Science, 2016, 12(1): 1-8. DOI: 10.3969/j.issn.2095-0780.2016.01.001
Citation: SHI Rongjun, LI Zhihong, ZHOU Linbin, TAN Yehui. Influence of dissolved aluminum on marine phytoplankton community structure and growth of Synechococcus sp.[J]. South China Fisheries Science, 2016, 12(1): 1-8. DOI: 10.3969/j.issn.2095-0780.2016.01.001

Influence of dissolved aluminum on marine phytoplankton community structure and growth of Synechococcus sp.

More Information
  • Received Date: April 06, 2015
  • Revised Date: April 26, 2015
  • We investigated the preliminary mechanisms of dissolved aluminum (Al3+) on marine phytoplankton through field and laboratory incubation experiments. Results from in situ experiments indicate that dissolved Al decreased the total abundance of micro-phytoplankton by inhibiting the growth of cyanophyta Trichodesmium sp.; the ratio of diatoms and dinoflagellates to total phytoplankton increased, leading to the change of micro-phytoplankton community structure. Whereas, the growth of Synechococcus was promoted after initial inhibition by Al, which resulted in the increasing of total abundance of pico-phytoplankton. Additionally, the stimulatory effects of Al on Synechococcus was observed under semi-continuous culture condition; especially in 20 μmol · L-1 Al-treated group, the significant promotion of total pico-phytoplankton abundance and growth of Synechococcus were detected (P < 0.05). The growth of Synechococcus and the maximum quantum efficiency of photosynthesis II after long-term cultivation in dissolved Al were promoted by enhancing photosynthesis due to the increase of four photosynthetic pigments including phycoerythrin, phycocyanin, allophycocyanin and chlorophyll a. The higher Al conditions resulted in higher growth rate in exponential phase and biomass in stationary phases as well as intracellular organic carbon accumulation.

  • [1]
    王趁义, 罗明标, 毕树平. 环境中羟基聚合铝型体的形成和形态转化规律[J]. 分析科学学报, 2003, 19(4): 383-388. doi: 10.3969/j.issn.1006-6144.2003.04.025
    [2]
    ORIANS K J, BRULAND K W. The biogeochemistry of Aluminum in the Pacific Ocean[J]. Earth Planet Sci Lett, 1986, 78(4): 397-410. doi: 10.1016/0012-821X(86)90006-3
    [3]
    王琼. 南海溶解态铝的分布及其对浮游植物群落结构影响的研究[D]. 广州: 中国科学院大学南海海洋研究所, 2013: 22. https://xueshu.baidu.com/usercenter/paper/show?paperid=2275264a12d3e5ec227a61f3fbd26540
    [4]
    MEASURES C I, BROWN M T, VINK S. Dust deposition to the surface waters of the western and central North Pacific inferred from surface water dissolved aluminum concentrations[J]. Geochem Geophy Geosy, 2005, 6(9): Q09M03. doi: 10.1029/2005GC000922
    [5]
    CHUNG C C, CHANG J, GONG G C, et al. Effects of Asian dust storms on Synechococcus population in the subtropical Kuroshio Current[J]. Mar Biotechnol, 2011, 13(4): 751-763. doi: 10.1007/s10126-010-9336-5
    [6]
    JICKELLS T D. Atmospheric inputs of metals and nutrients to the oceans: their magnitude and effects[J]. Mar Chem, 1995, 48(3/4): 199-214. https://www.semanticscholar.org/paper/Atmospheric-inputs-of-metals-and-nutrients-to-the-Jickells/3466b40fd8d99c17cf9b089af139da17ebe51470
    [7]
    HERUT B, ZOHARY T, KROM M D, et al. Response of East Mediterranean surface water to Saharan dust: on-board microcosm experiment and field observations[J]. Deep Sea Res Ⅱ, 2005, 52(22/23): 3024-3040. https://www.semanticscholar.org/paper/Response-of-East-Mediterranean-surface-water-to-and-Herut-Zohary/5517861e97db238e35c55f349c00decb5b52bbe8
    [8]
    STOFFYN M. Biological control of dissolved Al in seawater: experimental evidence[J]. Science, 1979, 203(4381): 651-653. doi: 10.1126/science.203.4381.651
    [9]
    KONING E, GEHLEN M, FLANK A M. Rapid post-mortem incorporation of Al in diatom frustules: evidence from chemical and structural analyses[J]. Mar Chem, 2007, 106(1/2): 208-222. https://www.semanticscholar.org/paper/Rapid-post-mortem-incorporation-of-aluminum-in-from-Koning-Gehlen/ddcc32bfa51b1ae9106695e664d9a57ad4fe094d
    [10]
    SAçAN M T, OZTAY F, BOLKENT S. Exposure of Dunaliella tertiolecta to lead and aluminum: toxicity and effects on ultrastructure[J]. Biol Trace Elem Res, 2007, 120(1/2/3): 264-272. https://pubmed.ncbi.nlm.nih.gov/17916979/
    [11]
    WATERBURY J B, WATSON S W, VALOIS F W. Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus[J]. Can Bull Fish Aquat Sci, 1986, 214: 71-120. https://www.semanticscholar.org/paper/Biological-and-ecological-characterization-of-the-Waterbury/b0a95f54ed8a9bba614731941dd58771961366c5
    [12]
    SHARMA N K T S. Cyanobacteria. (blue-green algae): facts and challenges[J]. J Appl Phycol, 2011, 23(6): 1059-1081. doi: 10.1007/s10811-010-9626-3
    [13]
    李丹. 六种细菌对赤潮藻Scrippsiella trochoidea的抑制效应研究[D]. 广州: 暨南大学, 2004: 15-16. https://apps.wanfangdata.com.cn/thesis/article:D463663
    [14]
    谭激扬. 南海北部海区夏季浮游植物群落结构及其对中尺度过程的响应[D]. 广州: 中国科学院大学南海海洋研究所, 2013: 9. doi: 10.12362/j.issn.1671-6647.20230306002
    [15]
    王琼, 谭烨辉, 周林滨, 等. 南海中南部溶解态铝初探: 促进甲藻生长?[J]. 热带海洋学报, 2014, 33(2): 78-86. https://lib.cqvip.com/Qikan/Article/Detail?id=50004226&from=Qikan_Article_Detail
    [16]
    严宏强, 余克服, 谭烨辉. 夏季南海北部水体中颗粒有机碳的分布特征[J]. 热带地理, 2011, 31(2): 133-137, 145. https://www.rddl.com.cn/CN/Y2011/V31/I2/133
    [17]
    张宝玉, 李夜光, 李中奎, 等. 温度、光照强度和pH对雨生红球藻光合作用和生长速率的影响[J]. 海洋与湖沼, 2003, 34(5): 558-565. doi: 10.3321/j.issn:0029-814X.2003.05.011
    [18]
    PARKHILL J P, MAILLET G, CULLEN J J. Fluorescence-based maximal quantum yield for PSⅡ as a diagnostic of nutrient stress[J]. J Phycol, 2001, 37(4): 517-529. doi: 10.1046/j.1529-8817.2001.037004517.x
    [19]
    SIMEUNOVIć J, BEŠLIN K, SVIRčEV Z, et al. Impact of Nitrogen and drought on phycobiliprotein content in terrestrial cyanobacterial strains[J]. J Appl Phycol, 2013, 25(2): 597-607. doi: 10.1007/s10811-012-9894-1
    [20]
    VRIELING E G, POORT L, BEELEN T P, et al. Growth and silica content of the diatoms Thalassiosira weissflogii and Navicula salinarum at different salinities and enrichments with aluminium[J]. Eur J Phycol, 1999, 34(3): 307-316. doi: 10.1080/09670269910001736362
    [21]
    GOLDING L A, ANGEL B M, BATLEY G E, et al. Derivation of a water quality guideline for aluminium in marine waters[J]. Environ Toxicol Chem, 2014, 34(1): 141-151. doi: 10.1002/etc.2771
    [22]
    WATERBURY J B, WATSON S W, GUILLARD R, et al. Widespread occurrence of a unicellular, marine planktonic, cyanobacterium[J]. Nature, 1979, 277(5694): 293-294. doi: 10.1038/277293a0
    [23]
    GUO C, LIU H, ZHENG L, et al. Seasonal and spatial patterns of picophytoplankton growth, grazing and distribution in the East China Sea[J]. Biogeosciences, 2014, 11(7): 1847-1862. doi: 10.5194/bg-11-1847-2014
    [24]
    陈纪新, 黄邦钦, 郑微云. 海洋超微型浮游植物多样性研究方法进展[J]. 海洋科学, 2002, 26(8): 34-39. https://xueshu.baidu.com/usercenter/paper/show?paperid=00a80c2b7f99caee19a7c3d6c73a672d
    [25]
    LEE Y, CHOI J K, YOUN S, et al. Influence of the physical forcing of different water masses on the spatial and temporal distributions of picophytoplankton in the northern East China Sea[J]. Cont Shelf Res, 2014, 88(1): 216-227. https://www.semanticscholar.org/paper/Influence-of-the-physical-forcing-of-different-on-Lee-Choi/c649f5ad73ff9e45b0198f4081fbc8c9bf147883
    [26]
    史修周, 徐燕, 梁艳, 等. 坛紫菜藻胆蛋白及叶绿素a的测定与分析[J]. 集美大学学报(自然科学版), 2008, 13(3): 221-226. https://xueshu.baidu.com/usercenter/paper/show?paperid=c4d2586e93f7588f324244a98e4d5d0d
    [27]
    隋正红, 张学成. 藻红蛋白研究进展[J]. 海洋科学, 1998, 3(4): 24-27. https://xueshu.baidu.com/usercenter/paper/show?paperid=e0c304c177a2c30867efa5e9b555475b
    [28]
    CAMPBELL D, HURRY V, CLARKE A K, et al. Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation[J]. Microbiol Mol Biol Rev, 1998, 62(3): 667-683. https://pubmed.ncbi.nlm.nih.gov/9729605/
    [29]
    曾艳艺, 黄翔鹄. 温度、光照对小环藻生长和叶绿素a含量的影响[J]. 广东海洋大学学报, 2007, 27(6): 36-40. https://xueshu.baidu.com/usercenter/paper/show?paperid=1de68bd0bf3e8b20ef998a426ec1bfdd
    [30]
    曾艳艺, 黄翔鹄. 氮、磷、硅对条纹小环藻生长和叶绿素a含量的影响[J]. 广东海洋大学学报, 2011, 31(4): 46-51. https://xueshu.baidu.com/usercenter/paper/show?paperid=2f5078422503d95f2ff5b37ff741cd99
  • Related Articles

    [1]WANG Shaomin, MA Zhenhua, HU Jing, WANG Wenfei, MAO Fukao, BAI Zemin, WANG Lixian. Hydrodynamic performance of a square-type submersible net cage under combined wind, wave and current conditions[J]. South China Fisheries Science, 2025, 21(2): 1-13. DOI: 10.12131/20240245
    [2]CHEN Liangdong, ZHAN Jianpo, WANG Qing. Community structure of phytoplankton and their indicative effect on water quality of Pearl River[J]. South China Fisheries Science, 2023, 19(6): 1-10. DOI: 10.12131/20230059
    [3]SHI Xiaoyi, DING Xiaoting, WAN Zixuan, YING Yu, LI Fuli, GAO Xin, FAN Yong. Mixotrophic and carbon fixation culture of nervonic acid-producing microalgae Mychonastes afer[J]. South China Fisheries Science, 2022, 18(2): 134-141. DOI: 10.12131/20210307
    [4]ZHANG Xiaolei, WANG Qiang, ZHANG Guoqi, ZHOU Lu, LI Tingfa, ZHANG Yu, ZHAO Siya. Spatial variation of phytoplankton community structure of in-pond raceway system[J]. South China Fisheries Science, 2021, 17(3): 36-45. DOI: 10.12131/20210004
    [5]SU Li, HUANG Zirong, CHEN Zuozhi. Characteristics of phytoplankton community in Shuidong Bay in spring and autumn[J]. South China Fisheries Science, 2015, 11(4): 27-33. DOI: 10.3969/j.issn.2095-0780.2015.04.004
    [6]GUO Yongjian, LUO Zhaolin, ZHU Changbo, LI Junwei, SU Li, GUO Yihui. Influence of aquaculture on characteristics of phytoplankton community in Liusha Bay[J]. South China Fisheries Science, 2015, 11(2): 57-65. DOI: 10.3969/j.issn.2095-0780.2015.02.008
    [7]SUN Xiaoqing, DONG Shugang, TANG Zhihong. Influences of nutrients and illuminance on phytoplankton community structure[J]. South China Fisheries Science, 2008, 4(1): 1-9.
    [8]QIN Xuebo, HUANG Puyi, LIU Manhong, MA Chengxue, YU Hongxian. Phytoplankton assemblage classification in Anbang River wetland in summer[J]. South China Fisheries Science, 2007, 3(6): 1-7.
    [9]ZHANG Xin, ZOU Dinghui, XU Zhiguang, LIU Shuxia. Effects of increased atmospheric CO2 and N supply on some physiological and biochemical traits in the economic brown seaweed, Hizikia fusiformis (Sargassaceae, Phaeophyta)[J]. South China Fisheries Science, 2007, 3(3): 35-40.
    [10]ZHANG Zhuangli, YE Sunzhong, YE Quantu. The species composition and quantity distribution characteristics of phytoplankton in Fujian sea area[J]. South China Fisheries Science, 2006, 2(5): 45-50.
  • Cited by

    Periodical cited type(2)

    1. 周林滨,黄良民,谭烨辉. 铁铝假说与海洋铝施肥增汇潜力展望. 热带海洋学报. 2023(03): 1-18 .
    2. 刘甲星,周林滨,柯志新,李刚,史荣君,谭烨辉. 铝对海洋固氮蓝藻Crocosphaera watsonii生长及固氮速率的影响. 热带海洋学报. 2017(02): 12-18 .

    Other cited types(4)

Catalog

    Recommendations
    Ecological benefit evaluation of marine ranching in guangdong province based on entropy weight fuzzy matter element method
    LIU Ruijie et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    Distribution characteristics and ecological risk assessment of heavy metals in sediments in adjacent waters of wailingding marine ranching
    FENG Xue et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    Algicidal effect of bacteria czbc1 onmicrocystisaeruginosain chloride type saline-alkali water
    HU Xiaojuan et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    Improvement of gel strength of fermented tilapia surimi bylactiplantibacillus plantarumthrough inhibition of protein hydrolysis
    CUI Qiaoyan et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    Phytoplankton community structure and its relationship with environmental factors in the macrophyte and algae dominated zones of changhu lake
    JOURNAL OF HYDROECOLOGY, 2024
    Phytoplankton community structure and influencing factors in lushui reservoir
    JOURNAL OF HYDROECOLOGY, 2024
    Surface-growing organophosphorus layer on layered double hydroxides enables boosted and durable electrochemical freshwater/seawater oxidation
    Zhou, Shunfa et al., APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2023
    Regulating inorganic and organic components to build amorphous-znfx enriched solid-electrolyte interphase for highly reversible zn metal chemistry
    Liang, Guojin et al., ADVANCED MATERIALS, 2023
    Characterisation of environmentally persistent free radicals and their contributions to oxidative potential and reactive oxygen species in sea spray and size-resolved ambient particles
    NPJ CLIMATE AND ATMOSPHERIC SCIENCE, 2025
    Impact of peganum harmala/zinc /zinc oxide nanoparticles on thyroid and pancreatic function in obese rats: a biochemical and physiological analysis
    INTERNATIONAL JOURNAL OF PHARMACOLOGY, 2024
    Powered by
    Article views (3413) PDF downloads (1390) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return