ZHANG Xiaolei, WANG Qiang, ZHANG Guoqi, ZHOU Lu, LI Tingfa, ZHANG Yu, ZHAO Siya. Spatial variation of phytoplankton community structure of in-pond raceway system[J]. South China Fisheries Science, 2021, 17(3): 36-45. DOI: 10.12131/20210004
Citation: ZHANG Xiaolei, WANG Qiang, ZHANG Guoqi, ZHOU Lu, LI Tingfa, ZHANG Yu, ZHAO Siya. Spatial variation of phytoplankton community structure of in-pond raceway system[J]. South China Fisheries Science, 2021, 17(3): 36-45. DOI: 10.12131/20210004

Spatial variation of phytoplankton community structure of in-pond raceway system

More Information
  • Received Date: January 04, 2021
  • Revised Date: January 28, 2021
  • Accepted Date: February 07, 2021
  • Available Online: March 05, 2021
  • The in-pond raceway system (IPRS) based on intensive production of ponds is an emerging aquaculture model. In order to further understand the ecological structure dynamics of this system's water body circulation process and to reveal the change characteristics of water quality in purification area, we studied the spatial variability of phytoplankton community structure and the relationship between the phytoplankton community structure changes and the environmental factors by Redundancy Analysis (RDA) during the growing season in IPRS of grass carp (Ctenopharyngodon idella). The system identified 99 species of phytoplankton in seven phyla, mainly including Cyanophyta, Chlorophyte, Bacillariophyta, Euglenophyta, Cryptophyta, Pyrrophyta and Chrysophyta. Chlorophyta had the largest number of species (54 species), followed by Cyanophyta (18 species). In this system, the phytoplankton community structure in different areas was different. The density and biomass of phytoplankton in the middle of the purification area were the highest, and those of Cyanophyta in the purification area were higer than that in the culture area. The relative density of Cyanophyta in different areas was much higher than those of Chlorophyta and Bacillariophyta. From the front to the back of the purification zone, the relative density of Cyanophyta gradually increased, while those of Chlorophyta and Bacillariophyta gradually decreased. The results of RDA show that the main environmental factors that affect the changes in the phytoplankton community structure in the system are temperature, nitrogen and phosphorus nutrients.
  • [1]
    农业农村部渔业渔政管理局. 2019中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2019: 49.
    [2]
    POUIL S, SAMSUDIN R, SLEMBROUCK J, et al. Nutrient budgets in a small-scale freshwater fish pond system in Indonesia[J]. Aquaculture, 2019, 504(1): 267-274.
    [3]
    NHAN D K, VERDEGEM M C J, MILSTEIN A, et al. Water and nutrient budgets of ponds in integrated agriculture-aquaculture systems in the Mekong Delta, Vietnam[J]. Aquacult Res, 2008, 39(11): 1216-1228. doi: 10.1111/j.1365-2109.2008.01986.x
    [4]
    WANG J, BEUSEN A H W, LIU X, et al. Aquaculture production is a large, spatially concentrated source of nutrients in Chinese freshwater and coastal seas[J]. Environ Sci Technol, 2020, 54(3): 1464-1474. doi: 10.1021/acs.est.9b03340
    [5]
    LI X, LI J, WANG Y, et al. Aquaculture industry in China: current state, challenges, and outlook[J]. Rev Fish Sci, 2011, 19(3): 187-200. doi: 10.1080/10641262.2011.573597
    [6]
    蔡珀, 周恩华. 美国低碳高效池塘循环流水精养新技术[J]. 海洋与渔业: 水产前沿, 2012(6): 68-72.
    [7]
    BROWN T W, CHAPPELL J A, BOYD C E. A commercial-scale, in-pond raceway system for Ictalurid catfish production[J]. Aquacult Engin, 2011, 44(3): 72-79. doi: 10.1016/j.aquaeng.2011.03.003
    [8]
    WANG Y Y, XU G C, NIE Z J, et al. Effect of stocking density on growth, serum biochemical parameters, digestive enzymes activity and antioxidant status of largemouth bass, Micropterus salmoides[J]. Pakistan J Zool, 2019, 51(4): 1509-1517.
    [9]
    BOYD C E. Water quality[M]. Cham: Springer International Publishing AG, 2015: 273-274.
    [10]
    LANDA M, BLAIN S, CHRISTAKI U, et al. Shifts in bacterial community composition associated with increased carbon cycling in a mosaic of phytoplankton blooms[J]. ISME J, 2015, 10(1): 39-50.
    [11]
    LOGUE J B, STEDMON C A, KELLERMAN A M, et al. Experimental insights into the importance of aquatic bacterial community composition to the degradation of dissolved organic matter[J]. ISME J, 2015, 10(3): 533-45.
    [12]
    LUCAS R, COURTIES C, HERBLAND A, et al. Eutrophication in a tropical pond: understanding the bacterioplankton and phytoplankton dynamics during a vibriosis outbreak using flow cytometric analyses[J]. Aquaculture, 2010, 310(1): 112-121.
    [13]
    GIRIPUNJE M D, FULKE A B, KHAIRNAR K, et al. A review of phytoplankton ecology in freshwater lakes of India[J]. Lakes, Reserv Ponds, 2013, 7(2): 127-141.
    [14]
    陈思, 李艺彤, 蔡文贵, 等. 虾蟹混养池塘浮游植物群落结构的变化特征[J]. 南方水产科学, 2020, 16(3): 79-85.
    [15]
    翁丽萍, 邹礼根, 邱静, 等. 池塘内循环“水槽式”与池塘传统养殖青鱼的肌肉质构差异分析[J]. 科学养鱼, 2018(1): 72-73.
    [16]
    YUAN J, NI M, LIU M, et al. Analysis of the growth performances, muscle quality, blood biochemistry and antioxidant status of Micropterus salmoides farmed in in-pond raceway systems versus usual-pond systems[J]. Aquaculture, 2019, 511: 734241.
    [17]
    BROWN T W, HANSON T R, CHAPPELL J A, et al. Economic feasibility of an in-pond raceway system for commercial catfish production in west Alabama[J]. North Am J Aquacult, 2014, 76(1): 79-89. doi: 10.1080/15222055.2013.862195
    [18]
    RAMOS S, COWEN R K, RÉ P, et al. Temporal and spatial distributions of larval fish assemblages in the Lima estuary (Portugal)[J]. Estuar Coast Shelf Sci, 2006, 66(1): 303-14.
    [19]
    WONGKIEW S, HU Z, CHANDRAN K, et al. Nitrogen transformations in aquaponic systems: a review[J]. Aquacult Engin, 2017, 76(1): 9-19.
    [20]
    GRABER A, JUNGE R. Aquaponic systems: nutrient recycling from fish wastewater by vegetable production[J]. Desalination, 2009, 246(1/2/3): 147-156.
    [21]
    DUPUIS A P, HANN B J. Warm spring and summer water temperatures in small eutrophic lakes of the Canadian prairies: potential implications for phytoplankton and zooplankton[J]. J Plankton Res, 2009, 5(1): 489-502.
    [22]
    郑淑娴, 黄彬彬, 戴明. 水体悬浮物增加对浮游植物种群增长的影响研究[J]. 海洋湖沼通报, 2020, 172(1): 145-152.
    [23]
    HE Q, QIU Y, LIU H, et al. New insights into the impacts of suspended particulate matter on phytoplankton density in a tributary of the Three Gorges Reservoir, China[J]. Sci Rep, 2017, 7(1): 13518. doi: 10.1038/s41598-017-13235-0
    [24]
    GUINDER V A, POPOVICH C A, PERILLO G M E. Particulate suspended matter concentrations in the Bahía Blanca Estuary, Argentina: implication for the development of phytoplankton blooms[J]. Estuar Coast Shelf Sci, 2009, 85(1): 157-165. doi: 10.1016/j.ecss.2009.05.022
    [25]
    MANSOURI H, MANSOURI H, TALEBIZADEH B, et al. Study on the effect of sodium nitroprusside on growth and nitrogen fixation in blue-green algae nostoc linckia[J]. Iran J Sci Technol, 2019, 43(5): 2083-2090. doi: 10.1007/s40995-018-0589-6
    [26]
    KARLSON A M L, DUBERG J, MOTWANI N H, et al. Nitrogen fixation by cyanobacteria stimulates production in Baltic food webs[J]. Ambio, 2015, 44(S3): 413-426. doi: 10.1007/s13280-015-0660-x
    [27]
    HOWARTH R W, HOWARTH R W, MARINO R, et al. Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 1. Rates and importance[J]. Limnol Oceanogr, 1988, 33(4): 669-687.
    [28]
    SHAPIRO J. Current beliefs regarding dominance by blue-greens: the case for the importance of CO2 and pH[J]. Verh Int Verein Limnol, 2017, 24(1): 38-54.
    [29]
    SILVA C A D, TRAIN S, RODRIGUES L C. Phytoplankton assemblages in a Brazilian subtropical cascading reservoir system[J]. Hydrobiologia, 2005, 537(1/2/3): 99-109.
    [30]
    李卓佳, 梁伟峰, 陈素文, 等. 虾池常见微藻的光照强度、温度和盐度适应性[J]. 生态学杂志, 2008, 27(3): 397-400.
    [31]
    乔麟, 张曼, 李学军, 等. 草鱼 (Ctenopharyngodon idellus) 集约化养殖中浮游植物对饲料氮磷比的响应[J]. 生态科学, 2017, 36(4): 95-100.
  • Related Articles

    [1]YANG Jieqing, SUN Tao, YU Jinchen, WANG Yuekai, LI Sen, LI Xuanjin, ZHOU Jin, SHI Yunrong, CHEN Shuo, CHEN Lang, TIAN Wei, FU Jing, LI Lei, HU Haopeng. Analysis of spatial distribution characteristics of zooplankton and its influence by environmental factors in northwest Indian Ocean[J]. South China Fisheries Science. DOI: 10.12131/20240204
    [2]HOU Diyao, LI Aoxue, LYU Shaoliang, DONG Jianyu, CHEN Ning, WANG Xuefeng. Analysis of phytoplankton community structure and its relationship with environmental factors in coastal waters of eastern Leizhou Peninsula during spring and autumn[J]. South China Fisheries Science, 2025, 21(1): 55-65. DOI: 10.12131/20240183
    [3]SU Li, XU Shannan, LI Chunhou, CHEN Zuozhi. Phytoplankton community composition and its environmental impact factors in Pearl River Estuary during wet season[J]. South China Fisheries Science, 2025, 21(1): 46-54. DOI: 10.12131/20240143
    [4]LIAO Zujun, WANG Xuefeng, ZHOU Yanbo, ZHANG Lei, LYU Shaoliang, WU Qia'er, DONG Jianyu, MA Shengwei. Analysis of effects of environmental factors on Sthenoteuthis oualaniensis based on structural equation model[J]. South China Fisheries Science, 2024, 20(2): 11-18. DOI: 10.12131/20230127
    [5]ZHANG Xu, ZHOU Li, CAI Min, CUI Naxin, ZOU Guoyan, ZHAO Zhiyong, YUAN Quan, HUANG Weiwei, ZHANG Yalei. Analysis of phytoplankton community in aquaculture crab pond using morphological and metagenomics methods[J]. South China Fisheries Science, 2024, 20(1): 151-160. DOI: 10.12131/20230141
    [6]CHEN Si, LI Yitong, CAI Wengui, CHEN Haigang, TIAN Fei, ZHANG Linbao, ZHANG Zhe, GUO Zhixun. Variation characteristics of phytoplankton community in polyculture ponds of Scylla serrata and Penaeus monodon[J]. South China Fisheries Science, 2020, 16(3): 79-85. DOI: 10.12131/20190233
    [7]ZHANG Yingqiu, HUANG Daotian, LI Xinhui, LIU Qianfu, LI Jie, LI Yuefei, YANG Jiping, ZHU Shuli. Fish community structure and environmental effects of West River[J]. South China Fisheries Science, 2020, 16(1): 42-52. DOI: 10.12131/20190142
    [8]WANG Wenjie, CHEN Pimao, YUAN Huarong, FENG Xue, ZHANG Lu, LONG Xinling, CHEN Wenjing, LI Dandan. Analysis of seasonal variation of Crustaceans community structure in Zhelin Bay of eastern Guangdong[J]. South China Fisheries Science, 2018, 14(3): 29-39. DOI: 10.3969/j.issn.2095-0780.2018.03.004
    [9]LÜ Shaoliang, WANG Xuefeng, ZENG Jiawei, CHEN Haigang, WANG Lifei, JIA Xiaoping. Phytoplankton community structure and its environmental adaptation in Fangcheng coastal waters[J]. South China Fisheries Science, 2017, 13(4): 17-25. DOI: 10.3969/j.issn.2095-0780.2017.04.003
    [10]TAN Xuebo. Relationship between phytoplankton quantity and its environmental factors in wetland of cold regions in spring and summer based on the grey association analysis[J]. South China Fisheries Science, 2009, 5(1): 17-22. DOI: 10.3969/j.issn.1673-2227.2009.01.003
  • Cited by

    Periodical cited type(9)

    1. 傅建军,安睿,朱文彬,王兰梅,罗明坤,董在杰. 套养池塘主要养殖阶段浮游生物的群落结构特征. 水产学杂志. 2024(01): 104-112 .
    2. 向劲,吴启藩,宋锐,彭治桃,李金龙,高峰,谢敏,程小飞. 循环水养殖池塘中浮游动植物功能群特征及水质评价. 水产学杂志. 2024(01): 81-89 .
    3. 闵文武,王龙燕,陈飞雄,周其椿. 集装箱养殖生态净化池塘中浮游植物群落结构多样性分析. 水产科技情报. 2024(05): 302-310 .
    4. 郑颖强,代梨梨,张辉,彭亮,陶玲,李谷,柴毅,廖咏玲. 池塘循环水养殖系统净化单元对水体浮游植物的影响. 中国水产科学. 2024(12): 1497-1510 .
    5. 王小冬,车轩,刘兴国,顾兆俊,丁艳青,陈晓龙. 曝气扰动促进高营养的饲料腐烂液中绿藻生长. 上海海洋大学学报. 2023(01): 142-149 .
    6. 闵文武,王龙燕,陈飞雄,周其椿,赵瑞平. 生态净化池塘浮游动物群落结构特征及其与环境因子的关系. 贵州农业科学. 2023(02): 66-75 .
    7. 赵秀侠,方婷,陈金良,高娜,陈诚,卢文轩. 陆基推水集装箱循环水养殖系统中浮游植物群落结构特征. 农业环境科学学报. 2023(04): 869-878 .
    8. 王龙燕,闵文武,王金乐,陈飞雄,周其椿,吴俣学. 集装箱循环水养殖系统中浮游植物群落结构特征及影响因素. 渔业现代化. 2022(04): 26-36 .
    9. 赵宇曦,刘兴国,周润锋,肖述文,孙照云. 池塘多营养级养殖水体的初级生产力及影响因子分析. 渔业现代化. 2022(06): 91-99 .

    Other cited types(4)

Catalog

    Article views (1031) PDF downloads (90) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return