SHI Xiaoyi, DING Xiaoting, WAN Zixuan, YING Yu, LI Fuli, GAO Xin, FAN Yong. Mixotrophic and carbon fixation culture of nervonic acid-producing microalgae Mychonastes afer[J]. South China Fisheries Science, 2022, 18(2): 134-141. DOI: 10.12131/20210307
Citation: SHI Xiaoyi, DING Xiaoting, WAN Zixuan, YING Yu, LI Fuli, GAO Xin, FAN Yong. Mixotrophic and carbon fixation culture of nervonic acid-producing microalgae Mychonastes afer[J]. South China Fisheries Science, 2022, 18(2): 134-141. DOI: 10.12131/20210307

Mixotrophic and carbon fixation culture of nervonic acid-producing microalgae Mychonastes afer

More Information
  • Received Date: October 21, 2021
  • Revised Date: December 13, 2021
  • Accepted Date: January 07, 2022
  • Available Online: January 26, 2022
  • Microalgae are a group of single cell microorganism, which play an important role in aquatic production such as aquatic feeding and water regulating. This research focuses on the growth and photosynthetic capacity of Mychonastes afer and Chlorella sorokiniana under different nutrition and aeration conditions. The microalgae were cultivated under autotrophic, mixotrophic or heterotrophic conditions, respectively. And the influence of CO2 concentration was also investigated. The growth curve, photosynthetic electron transfer rate, organic carbon source utilization, photosynthetic oxygen evolution and respiratory oxygen consumption rate were measured to inflect the differences between M. afer and C. sorokiniana, and the emphasis was given to lipid components of M. afer. The results show that C. sorokiniana could grow under heterotrophic condition without light, while M. afer could not. The photosynthetic system of the two species were both inhibited by organic carbon sources, displaying lower efficiency of photosynthetic electron transfer rates and slower photosynthetic oxygen evolution rates. Besides, it is found that under mixotrophy condition, high concentration of CO2 was beneficial to the growth of M. afer, which promoted cell utilization of glucose, and increased the production of lipid and nervonic acid. The study explores a mixotrophic condition for M. afer to produce natural nervonic acid, shows significant differences between the two algae species in photosynthetic system, and explores the cooperative utilization of external organic carbon sources.
  • [1]
    魏东. 微藻在水产养殖业中的应用及发展趋势[J]. 当代水产, 2014, 39(2): 57-58. doi: 10.3969/j.issn.1674-9049.2014.02.016
    [2]
    张国维, 李勤慎, 邵东宏, 等. 微藻在水产养殖中的研究应用进展[J]. 中国水产, 2020(2): 72-74.
    [3]
    王盛林, 刘平怀, 曹猛. 微藻营养价值及微藻饵料的开发利用[J]. 食品工业, 2019, 40(7): 275-279.
    [4]
    芦崇德, 刘婧婧, 冯一平, 等. 固定化小球藻产氧及光合速率的研究[J]. 生物技术通报, 2021, 37(3): 92-98.
    [5]
    DING Y, GUO Z, MEI J, et al. Investigation into the novel microalgae membrane bioreactor with internal circulating fluidized bed for marine aquaculture wastewater treatment[J]. Membranes (Basel), 2020, 10(11): 353. doi: 10.3390/membranes10110353
    [6]
    刘鹏. 兼养培养对三种典型微藻生长与胞内组分及脂质合成相关基因表达的影响研究 [D]. 长沙: 中南大学, 2010: 10-15.
    [7]
    牛海亚, 马玉龙, 石勋祥, 等. 不同营养方式对小球藻FACHB 484生长的影响及其非自养生长机理研究[J]. 水生生物学报, 2014, 38(3): 474-479. doi: 10.7541/2014.67
    [8]
    LI T, ZHENG Y, YU L, et al. Mixotrophic cultivation of a Chlorella sorokiniana strain for enhanced biomass and lipid production[J]. Biomass and Bioenergy, 2014, 66: 204-213. doi: 10.1016/j.biombioe.2014.04.010
    [9]
    周华伟, 林炜铁, 陈涛. 小球藻的异养培养及应用前景[J]. 氨基酸和生物资源, 2005(4): 69-73.
    [10]
    LIU T, LIU F, WANG C, et al. The boosted lipid accumulation in microalga Chlorella vulgaris by a heterotrophy and nutrition-limitation transition cultivation regime[J]. World J Microbiol Biotechnol, 2016, 32(12): 202. doi: 10.1007/s11274-016-2164-7
    [11]
    ROSENBERG J N, KOBAYASHI N, BARNES A, et al. Comparative analyses of three Chlorella species in response to light and sugar reveal distinctive lipid accumulation patterns in the microalga C. sorokiniana[J]. PLoS One, 2014, 9(4): e92460. doi: 10.1371/journal.pone.0092460
    [12]
    JIN H, ZHANG H, ZHOU Z, et al. Ultrahigh-cell-density heterotrophic cultivation of the unicellular green microalga Scenedesmus acuminatus and application of the cells to photoautotrophic culture enhance biomass and lipid production[J]. Biotechnol Bioeng, 2020, 117(1): 96-108. doi: 10.1002/bit.27190
    [13]
    YUAN C, LIU J H, FAN Y, et al. Mychonastes afer HSO-3-1 as a potential new source of biodiesel[J]. Biotechnol Biofuels, 2011, 4(1): 47. doi: 10.1186/1754-6834-4-47
    [14]
    YUAN C, XU K, SUN J, et al. Ammonium, nitrate, and urea play different roles for lipid accumulation in the nervonic acid-producing microalgae Mychonastes afer HSO-3-1[J]. J Appl Phycol, 2018, 30(2): 793-801. doi: 10.1007/s10811-017-1308-y
    [15]
    FENG X, YONG F, FUHONG M, et al. Naphthylacetic acid and tea polyphenol application promote biomass and lipid production of nervonic acid-producing microalgae[J]. Front Plant Sci, 2018, 9: 506. doi: 10.3389/fpls.2018.00506
    [16]
    LI S, SHI X, LEPÈRE C, et al. Unexpected predominance of photosynthetic picoeukaryotes in shallow eutrophic lakes[J]. J Plankton Res, 2016, 38(4): 830-842. doi: 10.1093/plankt/fbw042
    [17]
    LIU C, SHI X, WU F, et al. Genome analyses provide insights into the evolution and adaptation of the eukaryotic picophytoplankton Mychonastes homosphaera[J]. BMC Genomics, 2020, 21(1): 477. doi: 10.1186/s12864-020-06891-6
    [18]
    范勇, 袁程, 刘君寒, 等. 利用微藻Mychonastes afer HSO-3生产神经酸的研究初探 [C]//中国藻类学会第八次会员大会暨第十六次学术讨论会论文摘要集. 上海: 中国海洋湖沼学会, 2011: 229.
    [19]
    王性炎, 王姝清. 神经酸研究现状及应用前景[J]. 中国油脂, 2010, 35(3): 1-5.
    [20]
    HU D D, CUI Y J, ZHANG J. Nervonic acid ameliorates motor disorder in mice with Parkinson's disease[J]. Neurochem J, 2021, 15(3): 317-324. doi: 10.1134/S1819712421030065
    [21]
    FAN Y, MENG H M, HU G R, et al. Biosynthesis of nervonic acid and perspectives for its production by microalgae and other microorganisms[J]. Appl Microbiol Biotechnol, 2018, 102(7): 3027-3035. doi: 10.1007/s00253-018-8859-y
    [22]
    SFORZA E, CIPRIANI R, MOROSINOTTO T, et al. Excess CO2 supply inhibits mixotrophic growth of Chlorella protothecoides and Nannochloropsis salina[J]. Bioresource Technol, 2012, 104: 523-529. doi: 10.1016/j.biortech.2011.10.025
    [23]
    CURIEN G, LYSKA D, GUGLIELMINO E, et al. Mixotrophic growth of the extremophile Galdieria sulphuraria reveals the flexibility of its carbon assimilation metabolism[J]. New Phytol, 2021, 231(1): 326-338. doi: 10.1111/nph.17359
    [24]
    OLIVEIRA C Y B, D'ALESSANDRO E B, ANTONIOSI N R, et al. Synergistic effect of growth conditions and organic carbon sources for improving biomass production and biodiesel quality by the microalga Choricystis minor var. minor[J]. Sci Total Environ, 2021, 759: 143476. doi: 10.1016/j.scitotenv.2020.143476
    [25]
    MARTINEZ F, ORUS M I. Interactions between glucose and inorganic carbon metabolism in Chlorella vulgaris strain UAM 101[J]. Plant Physiol, 1991, 95(4): 1150-1155. doi: 10.1104/pp.95.4.1150
    [26]
    徐峰. 产神经酸微藻Mychonastes afer的藻种改良和培养模式优化 [D]. 青岛: 青岛农业大学, 2018: 50-57.
    [27]
    袁程. 微藻生产生物柴油评价及其高产条件的优化 [D]. 保定: 河北农业大学, 2011: 34-42.
    [28]
    LIU J, HUANG J, FAN K W, et al. Production potential of Chlorella zofingienesis as a feedstock for biodiesel[J]. Bioresour Technol, 2010, 101(22): 8658-8663. doi: 10.1016/j.biortech.2010.05.082
    [29]
    SUN N, WANG Y, LI Y T, et al. Sugar-based growth, astaxanthin accumulation and carotenogenic transcription of heterotrophic Chlorella zofingiensis (Chlorophyta)[J]. Process Biochem, 2008, 43(11): 1288-1292. doi: 10.1016/j.procbio.2008.07.014
    [30]
    DOUCHA J, LÍVANSKÝ K. Production of high-density Chlorella culture grown in fermenters[J]. J Appl Phycol, 2012, 24(1): 35-43. doi: 10.1007/s10811-010-9643-2
    [31]
    杨树玲. 基于代谢组学技术研究不同营养方式对普通小球藻生理代谢的影响 [D]. 兰州: 西北师范大学, 2020: 2-7.
    [32]
    JEONGEUN P, SHAN Z, HIEP H T, et al. The contribution ratio of autotrophic and heterotrophic metabolism during a mixotrophic culture of Chlorella sorokiniana[J]. Int J Environ Res Public Health, 2021, 18(3): 1353. doi: 10.3390/ijerph18031353
    [33]
    VIDOTTI A D.S, RIAÑO-PACHÓN D M, MATTIELLO L, et al Analysis of autotrophic, mixotrophic and heterotrophic phenotypes in the microalgae Chlorella vulgaris using time-resolved proteomics and transcriptomics approaches[J]. Algal Res, 2020, 51: 102060.
    [34]
    刘晓娟. 三角褐指藻的自养、兼养和异养特性研究 [D]. 广州: 暨南大学, 2008: 58-88.
    [35]
    CAMPBELW J L, ALLEN L H, BOWES G. Effects of CO2 concentration on Rubisco activity, amount, and photosynthesis in soybean leaves[J]. Plant physiol, 1988, 88(4): 1310-1316. doi: 10.1104/pp.88.4.1310

Catalog

    Article views (667) PDF downloads (49) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return