Citation: | LIU Ruijie, YUAN Huarong, FENG Xue, CHEN Pimao. Ecological benefit evaluation of marine ranching in Guangdong Province based on Entropy Weight Fuzzy Matter Element Method[J]. South China Fisheries Science, 2024, 20(5): 14-23. DOI: 10.12131/20240137 |
Marine ranching is one of the key measures for the conservation of marine fishery resources and environmental restoration in Guangdong Province. To systematically evaluate the ecological benefits of marine ranching construction in Guangdong Province, we applied Entropy Weight Method (EWM) and Fuzzy Matter Element Method (FMEM) to construct a comprehensive evaluation model to evaluate the ecological benefits of the construction of marine ranching. Based on the survey data of biological resources and environmental factors of marine ranching in ten sea areas of Guangdong Province from 2019 to 2021, we screened out 26 key indicators such as transparency, dissolved oxygen, chlorophyll, primary productivity, planktonic biodiversity, etc., and developed three types of standards as a reference. The results show that the comprehensive evaluation scores of the ecological benefits of marine ranching in Guangdong Province from 2019 to 2021 are 0.588 113, 0.609 307 and 0.521 257, respectively, all of which are higher than the evaluation value of the first-class standard of 0.462 171, revealing that the marine ranching in Guangdong Province have maintained high ecological quality and effectively improved the ecological environment of the sea area. Primary productivity has a high importance in ecological benefit evaluation, and the slight decline in the score in 2021 is mainly due to the rise in inorganic nitrogen content and the decrease in the biodiversity indices of plankton and benthic organisms. It is recommended to further improve the evaluation index system to provide a more scientific method for evaluating the ecological benefits of marine ranching.
[1] |
纪建悦, 孙筱蔚. 海洋产业转型升级的内涵与评价框架研究[J]. 中国海洋大学学报 (社会科学版), 2021(6): 33-40.
|
[2] |
茹小尚, 邓贝妮, 冯其明, 等. 中外海洋牧场建设之比较[J]. 水产学报, 2023, 47(11): 97-106.
|
[3] |
张宛玉. 日本渔业发展历程对中国休闲渔业的启示[J]. 农村经济与科技, 2020, 31(13): 79-81. doi: 10.3969/j.issn.1007-7103.2020.13.033
|
[4] |
杨红生. 我国海洋牧场建设回顾与展望[J]. 水产学报, 2016, 40(7): 1133-1140.
|
[5] |
PRABOWO B, RIKARDI N, SETIAWAN M A, et al. Enhancing reef fish diversity using artificial reef-building: a case study of coral reef rehabilitation on Nyamuk Island, Anambas Islands[C]. IOP Conf Ser: Earth Environ Sci, 2021, 944: 012030.
|
[6] |
PONDELLA D J, CLAISSE J T, WILLIAMS C M. Theory, practice, and design criteria for utilizing artificial reefs to increase production of marine fishes[J]. Front Mar Sci, 2022, 9: 983253. doi: 10.3389/fmars.2022.983253
|
[7] |
李加林, 沈满洪, 马仁锋, 等. 海洋生态文明建设背景下的海洋资源经济与海洋战略[J]. 自然资源学报, 2022, 37(4): 829-849.
|
[8] |
杨红生, 丁德文. 海洋牧场3.0: 历程、现状与展望[J]. 中国科学院院刊, 2022, 37(6): 832-839.
|
[9] |
李娇, 李梦迪, 公丕海, 等. 海洋牧场渔业碳汇研究进展[J]. 渔业科学进展, 2022, 43(5): 142-150.
|
[10] |
林承刚, 杨红生, 陈鹰, 等. 现代化海洋牧场建设与发展: 第230期双清论坛学术综述[J]. 中国科学基金, 2021, 35(1): 143-152.
|
[11] |
HAMMOND M, BOND T, PRINCE J, et al. An assessment of change to fish and benthic communities following installation of an artificial reef[J]. Reg Stud Mar Sci, 2020, 39: 101408.
|
[12] |
BARTHOLOMEW A, BURT J A, FIRTH L B. Artificial reefs in the Arabian Gulf: benefits, challenges and recommendations for policy-makers[J]. Reg Stud Mar Sci, 2022, 56: 102723.
|
[13] |
CHONG L, SIDERS Z A, LORENZEN K, et al. Global synthesis of effects and feedbacks from artificial reefs on socioecological systems in recreational fisheries[J]. Fish Fish, 2024, 25(2): 303-319. doi: 10.1111/faf.12809
|
[14] |
韩业越, 殷蕊, 孙桂清, 等. 北戴河国家级海洋牧场示范区人工鱼礁建设效果评价[J]. 河北渔业, 2020(4): 24-27, 57.
|
[15] |
董天威, 黄六一, 唐衍力, 等. 日照前三岛人工鱼礁对渔业资源影响的初步评价[J]. 中国海洋大学学报 (自然科学版), 2015, 45(8): 38-45.
|
[16] |
丁德文, 索安宁. 现代海洋牧场建设的人工生态系统理论思考[J]. 中国科学院院刊, 2022, 37(9): 1335-1346.
|
[17] |
赵新生, 孙伟富, 任广波, 等. 海州湾海洋牧场生态健康评价[J]. 激光生物学报, 2014, 23(6): 626-632.
|
[18] |
LIU D J, ZOU Z H. Water quality evaluation based on improved fuzzy matter-element method[J]. J Environ Sci, 2012, 24(7): 1210-1216. doi: 10.1016/S1001-0742(11)60938-8
|
[19] |
田福金, 马青山, 张明, 等. 基于主成分分析和熵权法的新安江流域水质评价[J]. 中国地质, 2023, 50(2): 495-505.
|
[20] |
袁华荣, 陈丕茂. 广东省海洋牧场发展现状、问题与对策[J]. 广东农业科学, 2022, 49(7): 141-154.
|
[21] |
陈丕茂, 舒黎明, 袁华荣, 等. 国内外海洋牧场发展历程与定义分类概述[J]. 水产学报, 2019, 43(9): 1851-1869.
|
[22] |
陈清潮, 黄良民, 尹健强, 等. 南沙群岛海区浮游动物多样性研究I[M]//中国科学院南沙综合科学考察队. 南沙群岛及其邻近海区海洋生物多样性研究. 北京: 海洋出版社, 1994: 42-50.
|
[23] |
唐衍力, 于晴. 基于熵权模糊物元法的人工鱼礁生态效果综合评价[J]. 中国海洋大学学报 (自然科学版), 2016, 46(1): 18-26.
|
[24] |
郑元甲, 陈雪忠, 程家骅, 等. 东海大陆架生物资源与环境[M]. 上海: 上海科技出版社, 2003: 16-17.
|
[25] |
NAIR N V, NAYAK P K. Exploring water quality as a determinant of small-scale fisheries vulnerability[J]. Sustainability, 2023, 15(17): 13238. doi: 10.3390/su151713238
|
[26] |
冯雪, 戴小杰, 袁华荣, 等. 外伶仃海洋牧场附近海域游泳生物群落结构及其与环境因子的关系[J]. 上海海洋大学学报, 2024, 33(1): 186-201.
|
[27] |
封苏兰, 李玉, 朱琳, 等. 海州湾海洋牧场重金属的空间分布及来源分析[J]. 水生态学杂志, 2023, 44(5): 114-122.
|
[28] |
YANG C P, WANG L M, LIU Y, et al. Spatial distribution, potential risks and source identification of heavy metals in the coastal sediments of the northern Beibu Gulf, South China Sea[J]. Int J Environ Res Public Health, 2022, 19(16): 10205. doi: 10.3390/ijerph191610205
|
[29] |
ZHU Y X, TIAN D Z, YAN F. Effectiveness of entropy weight method in decision-making[J]. Math Probl Eng, 2020, 2020: 3564835.
|
[30] |
范硕, 宋波. 一种度量数据信息不确定性的方法[J]. 计算机与数字工程, 2021, 49(2): 347-352.
|
[31] |
HUANG Y M, FANG D, ZHOU H Y, et al. Efficiency evaluation of intelligent swarm based on AHP entropy weight method[J]. J Phys: Conf Ser, 2020, 1693: 012072. doi: 10.1088/1742-6596/1693/1/012072
|
[32] |
WANG F, XU Z H, PAN W Y, et al. Construction and application of groundwater environmental health assessment model based on entropy weight and fuzzy matter element[C]. IOP Conf Ser: Earth Environ Sci, 2020, 446: 052043.
|
[33] |
王文杰. 广东沿海五座人工鱼礁区建设效果评价[D]. 上海: 上海海洋大学, 2018: 10-22.
|
1. |
张凯,张麟,彭凌风,陈鑫,刘合刚,胡志刚. 基于性别差异的少棘巨蜈蚣蛋白组和转录组联合分析. 时珍国医国药. 2024(04): 892-898 .
![]() | |
2. |
韩财安,李安东,周美玉,廖怀生. 小龙虾幼苗培育关键技术. 江西水产科技. 2022(05): 30-31+34 .
![]() |