Citation: | WU Guangde, LAN Kunpeng, CHEN Xu, WANG Yun, ZHOU Chuanpeng, LIN Heizhao, MA Zhenhua, WANG Jun. Effects of replacement of fish meal by fermented cottonseed meal on growth performance, feed utilization and intestinal bacteria community of juvenile golden pompano (Trachinotus ovatus)[J]. South China Fisheries Science, 2023, 19(4): 126-138. DOI: 10.12131/20230036 |
[1] |
FAO. The state of the world fisheries and aquaculture [M]. Rome: Food and Agricultural Organization of the United Nations, 2022: 1-3.
|
[2] |
WU G Y. Recent advances in animal nutrition and metabolism [M]. Berlin: Springer Cham, 2022: 237-261.
|
[3] |
BRITTEN G L, DUARTE C M, WORM B. Recovery of assessed global fish stocks remains uncertain[J]. Proc Natl Acad Sci USA, 2021, 118(31): e2108532118. doi: 10.1073/pnas.2108532118
|
[4] |
COTTRELL R S, BLANCHARD J L, HALPERN B S, et al. Global adoption of novel aquaculture feeds could substantially reduce forage fish demand by 2030[J]. Nat Food, 2020, 1: 301-308. doi: 10.1038/s43016-020-0078-x
|
[5] |
KHAN M A, WAHID A, AHMAD M, et al. Cotton production and uses [M]. Berlin: Springer, 2020: 978-981.
|
[6] |
WANG J, CLARK G, JU M, et al. Effects of replacing menhaden fishmeal with cottonseed flour on growth performance, feed utilization and body composition of juvenile red drum Sciaenops ocellatus[J]. Aquaculture, 2020, 523: 735217. doi: 10.1016/j.aquaculture.2020.735217
|
[7] |
余忠丽, 恽辉, 王俊青, 等. 一种酶解发酵生产棉籽蛋白的方法: CN112219934B [P]. 2021-07-16.
|
[8] |
LIM S J, LEE K J. A microbial fermentation of soybean and cottonseed meal increases antioxidant activity and gossypol detoxification in diets for Nile tilapia, Oreochromis niloticus[J]. J World Aquac Soc, 2011, 42(4): 494-503. doi: 10.1111/j.1749-7345.2011.00491.x
|
[9] |
孙宏, 叶有标, 姚晓红, 等. 发酵棉籽粕部分替代鱼粉对黑鲷幼鱼生长性能, 体成分及血浆生化指标的影响[J]. 动物营养学报, 2014, 26(5): 1238-1245. doi: 10.3969/j.issn.1006-267x.2014.05.014
|
[10] |
SUN H, TANG J W, YAO X H, et al. Effects of replacement of fish meal with fermented cottonseed meal on growth performance, body composition and haemolymph indexes of Pacific white shrimp, Litopenaeus vannamei Boone, 1931[J]. Aquac Res, 2016, 47(8): 2623-2632. doi: 10.1111/are.12711
|
[11] |
LIU B, GUO H Y, ZHU K C, et al. Growth, physiological, and molecular responses of golden pompano Trachinotus ovatus (Linnaeus, 1758) reared at different salinities[J]. Fish Physiol Biochem, 2019, 45: 1879-1893. doi: 10.1007/s10695-019-00684-9
|
[12] |
XUN P W, ZHOU C P, HUANG X L, et al. Effects of dietary sodium acetate on growth performance, fillet quality, plasma biochemistry, and immune function of juvenile golden pompano (Trachinotus ovatus)[J]. Aquac Nutr, 2022, 2022: 1-11.
|
[13] |
农业农村部渔业渔政管理局, 全球水产技术推广总站, 中国水产学会. 2022中国渔业统计年鉴 [M]. 北京: 中国农业出版社, 2022: 22.
|
[14] |
WANG F, HAN H, WANG Y, et al. Growth, feed utilization and body composition of juvenile golden pompano Trachinotus ovatus fed at different dietary protein and lipid levels[J]. Aquac Nutr, 2013, 19(3): 360-367. doi: 10.1111/j.1365-2095.2012.00964.x
|
[15] |
ZHOU C P, HUANG Z, LIN H Z, et al. Effects of dietary leucine on glucose metabolism, lipogenesis and insulin pathway in juvenile golden pompano Trachinotus ovatus[J]. Aquac Rep, 2021, 19: 100626. doi: 10.1016/j.aqrep.2021.100626
|
[16] |
LIU K, LIU H, CHI S Y, et al. Effects of different dietary lipid sources on growth performance, body composition and lipid metabolism-related enzymes and genes of juvenile golden pompano, Trachinotus ovatus[J]. Aquac Res, 2018, 49(2): 717-725. doi: 10.1111/are.13502
|
[17] |
LI M M, ZHANG M, MA Y C, et al. Dietary supplementation with n-3 high unsaturated fatty acids decreases serum lipid levels and improves flesh quality in the marine teleost golden pompano Trachinotus ovatus[J]. Aquaculture, 2020, 516: 734632. doi: 10.1016/j.aquaculture.2019.734632
|
[18] |
FANG H H, ZHAO W, XIE J J, et al. Effects of dietary lipid levels on growth performance, hepatic health, lipid metabolism and intestinal microbiota on Trachinotus ovatus[J]. Aquac Nutr, 2021, 27(5): 1554-1568. doi: 10.1111/anu.13296
|
[19] |
ZHOU C P, GE X P, LIN H Z, et al. Effect of dietary carbohydrate on non-specific immune response, hepatic antioxidative abilities and disease resistance of juvenile golden pompano (Trachinotus ovatus)[J]. Fish Shellfish Immunol, 2014, 41(2): 183-190. doi: 10.1016/j.fsi.2014.08.024
|
[20] |
XUN P W, LIN H Z, WANG R X, et al. Effects of dietary vitamin B1 on growth performance, intestinal digestion and absorption, intestinal microflora and immune response of juvenile golden pompano (Trachinotus ovatus)[J]. Aquaculture, 2019, 506: 75-83. doi: 10.1016/j.aquaculture.2019.03.017
|
[21] |
WANG J, GATLIN III D M, LI L H, et al. Dietary chromium polynicotinate improves growth performance and feed utilization of juvenile golden pompano (Trachinotus ovatus) with starch as the carbohydrate[J]. Aquaculture, 2019, 505: 405-411. doi: 10.1016/j.aquaculture.2019.02.060
|
[22] |
TAN X H, SUN Z Z, HUANG Z, et al. Effects of dietary hawthorn extract on growth performance, immune responses, growth-and immune-related genes expression of juvenile golden pompano (Trachinotus ovatus) and its susceptibility to Vibrio harveyi infection[J]. Fish Shellfish Immunol, 2017, 70: 656-664. doi: 10.1016/j.fsi.2017.09.041
|
[23] |
马学坤. 卵形鲳鲹幼鱼对饲料中蛋白能量比和几种必需氨基酸需求的研究[D]. 青岛: 中国海洋大学, 2013: 26.
|
[24] |
HARDY R W. Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal[J]. Aquac Res, 2010, 41(5): 770-776. doi: 10.1111/j.1365-2109.2009.02349.x
|
[25] |
National Research Council. Nutrient requirements of fish and shrimp [M]. Now York: National Academies Press, 2011: 238.
|
[26] |
WILSON R P, ROBINSON E H, POE W E. Apparent and true availability of amino acids from common feed ingredients for channel catfish[J]. J Nutr, 1981, 111(5): 923-929. doi: 10.1093/jn/111.5.923
|
[27] |
ZHAO W, LIU Z L, NIU J. Growth performance, intestinal histomorphology, body composition, hematological and antioxidant parameters of Oncorhynchus mykiss were not detrimentally affected by replacement of fish meal with concentrated dephenolization cottonseed protein[J]. Aquac Rep, 2021, 19: 100557. doi: 10.1016/j.aqrep.2020.100557
|
[28] |
XU X Y, YANG H, ZHANG C Y, et al. Effects of replacing fishmeal with cottonseed protein concentrate on growth performance, flesh quality and gossypol deposition of largemouth bass (Micropterus salmoides)[J]. Aquaculture, 2022, 548: 737551. doi: 10.1016/j.aquaculture.2021.737551
|
[29] |
LIU H, DONG X H, TAN B P, et al. Effects of fish meal replacement by low-gossypol cottonseed meal on growth performance, digestive enzyme activity, intestine histology and inflammatory gene expression of silver sillago (Sillago sihama Forsskál) (1775)[J]. Aquac Nutr, 2020, 26(5): 1724-1735. doi: 10.1111/anu.13123
|
[30] |
BU X Y, CHEN A J, LIAN X Q, et al. An evaluation of replacing fish meal with cottonseed meal in the diet of juvenile Ussuri catfish Pseudobagrus ussuriensis: growth, antioxidant capacity, nonspecific immunity and resistance to Aeromonas hydrophila[J]. Aquaculture, 2017, 479: 829-837. doi: 10.1016/j.aquaculture.2017.07.032
|
[31] |
XIE S C, ZHOU Q C, ZHANG X S, et al. Effect of dietary replacement of fish meal with low-gossypol cottonseed protein concentrate on growth performance and expressions of genes related to protein metabolism for swimming crab (Portunus trituberculatus)[J]. Aquaculture, 2022, 549: 737820. doi: 10.1016/j.aquaculture.2021.737820
|
[32] |
LI M H, ROBINSON E H. Use of cottonseed meal in aquatic animal diets: a review[J]. N Am J Aquac, 2006, 68(1): 14-22. doi: 10.1577/A05-028.1
|
[33] |
ROMANO G B, SCHEFFLER J A. Lowering seed gossypol content in glanded cotton (Gossypium hirsutum L.) lines[J]. Plant breed, 2008, 127(6): 619-624. doi: 10.1111/j.1439-0523.2008.01545.x
|
[34] |
GAYLORD T G, GATLIN III D M. Determination of digestibility coefficients of various feedstuffs for red drum (Sciaenops ocellatus)[J]. Aquaculture, 1996, 139(3/4): 303-314. doi: 10.1016/0044-8486(95)01175-7
|
[35] |
王开卓. 棉酚对草鱼肠道结构和免疫屏障的作用及其机制 [D]. 雅安: 四川农业大学, 2019: 1-2.
|
[36] |
GONZÁLEZ-PEÑA M C, GOMES S Z, MOREIRA G S. Effects of dietary fiber on growth and gastric emptying time of the freshwater prawn Macrobrachiurn rosenbergii (de Man, 1879)[J]. J World Aquac Soc, 2002, 33(4): 441-447. doi: 10.1111/j.1749-7345.2002.tb00023.x
|
[37] |
DIAS J, HUELVAN C, DINIS M T, et al. Influence of dietary bulk agents (silica, cellulose and a natural zeolite) on protein digestibility, growth, feed intake and feed transit time in European seabass (Dicentrarchus labrax) juveniles[J]. Aquat Living Resour, 1998, 11(4): 219-226. doi: 10.1016/S0990-7440(98)89004-9
|
[38] |
LIU C, ZHAO L P, SHEN Y Q. A systematic review of advances in intestinal microflora of fish [J]. Fish Physiol Biochem, 2021, 47: 2041-2053.
|
[39] |
兰鲲鹏, 吴光德, 王珺, 等. 饲料中添加菊粉对卵形鲳鲹幼鱼存活、生长和肠道菌群的影响[J]. 南方水产科学, 2022, 18(5): 55-65. doi: 10.12131/20220082
|
[40] |
SUN Y G, ZHANG S S, NIE Q X, et al. Gut firmicutes: relationship with dietary fiber and role in host homeostasis [J]. Crit Rev Food Sci Nutr, 2022: 1-16. DOI: 10.1080/10408398.2022.2098249.
|
[41] |
THOMAS F, HEHEMANN J H, REBUFFET E, et al. Environmental and gut bacteroidetes: the food connection[J]. Front Microbiol, 2011, 2: 93.
|
[42] |
MENETREY Q, SORLIN P, JUMAS-BILAK E, et al. Achromobacter xylosoxidans and Stenotrophomonas maltophilia: emerging pathogens well-armed for life in the cystic fibrosis patients' lung[J]. Genes, 2021, 12(5): 610. doi: 10.3390/genes12050610
|
[43] |
YIN Z Q, LIU X B, QIAN C Q, et al. Pan-genome analysis of Delftia tsuruhatensis reveals important traits concerning the genetic diversity, pathogenicity, and biotechnological properties of the species[J]. Microbiol Spectr, 2022, 10(2): e02072-21.
|
[44] |
LIU L, FENG Y, WEI L, et al. Genome-based taxonomy of brevundimonas with reporting Brevundimonas huaxiensis sp. nov[J]. Microbiol Spectr, 2021, 9(1): e00111-21.
|
[45] |
SINGH S, SAHU C, PATEL S S, et al. Pandoraea apista bacteremia in a COVID-positive man: a rare coinfection case report from North India[J]. J Lab Phys, 2021, 13(2): 192-194.
|
[46] |
ZHANG Z S, WANG X M, HAN S W, et al. Effect of two seaweed polysaccharides on intestinal microbiota in mice evaluated by illumina PE250 sequencing[J]. Int J Biol Macromol, 2018, 112: 796-802. doi: 10.1016/j.ijbiomac.2018.01.192
|
[47] |
LI W J, ZHANG L, WU H X, et al. Intestinal microbiota mediates gossypol-induced intestinal inflammation, oxidative stress, and apoptosis in fish[J]. J Agric Food Chem, 2022, 70(22): 6688-6697. doi: 10.1021/acs.jafc.2c01263
|
[48] |
WANG M M, WICHIENCHOT S, HE X W, et al. In vitro colonic fermentation of dietary fibers: fermentation rate, short-chain fatty acid production and changes in microbiota[J]. Trends Food Sci Technol, 2019, 88: 1-9. doi: 10.1016/j.jpgs.2019.03.005
|
[49] |
ATSUMI S, HANAI T, LIAO J C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels[J]. Nature, 2008, 451(7174): 86-89. doi: 10.1038/nature06450
|
[50] |
XU Y Q, ZHU Y, LI X T, et al. Dynamic balancing of intestinal short-chain fatty acids: the crucial role of bacterial metabolism[J]. Trends Food Sci Tech, 2020, 100: 118-130. doi: 10.1016/j.jpgs.2020.02.026
|
[51] |
KONDO T, KISHI M, FUSHIMI T, et al. Acetic acid upregulates the expression of genes for fatty acid oxidation enzymes in liver to suppress body fat accumulation[J]. J Agric Food Chem, 2009, 57(13): 5982-5986. doi: 10.1021/jf900470c
|
[52] |
de VADDER F, KOVATCHEVA-DATCHARY P, GONCALVES D, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits[J]. Cell, 2014, 156(1/2): 84-96.
|
[53] |
GE H F, LI X F, WEISZMANN J, et al. Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids[J]. Endocrinology, 2008, 149(9): 4519-4126. doi: 10.1210/en.2008-0059
|
[54] |
HONG Y H, NISHIMURA Y, HISHIKAWA D, et al. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43[J]. Endocrinology, 2005, 146(12): 5092-5099. doi: 10.1210/en.2005-0545
|
[55] |
SAHURI-ARISOYLU M, BRODY L P, PARKINSON J R, et al. Reprogramming of hepatic fat accumulation and 'browning' of adipose tissue by the short-chain fatty acid acetate[J]. Int J Obes, 2016, 40(6): 955-963. doi: 10.1038/ijo.2016.23
|
[56] |
JIA Y M, HONG J, LI H F, et al. Butyrate stimulates adipose lipolysis and mitochondrial oxidative phosphorylation through histone hyperacetylation-associated β3-adrenergic receptor activation in high-fat diet-induced obese mice[J]. Exp Physiol, 2017, 102(2): 273-281. doi: 10.1113/EP086114
|
[57] |
GAO Z G, YIN J, ZHANG J, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice[J]. Diabetes, 2009, 58(7): 1509-1517. doi: 10.2337/db08-1637
|
[58] |
荀鹏伟. 卵形鲳鲹饲料脂肪需求量及短链脂肪酸的营养功能研究 [D]. 上海: 上海海洋大学, 2022: 105.
|
[59] |
DU Z Y, TURCHINI G M. Are we actually measuring growth? An appeal to use a more comprehensive growth index system for advancing aquaculture research[J]. Rev Aquac, 2022, 14(2): 525-527. doi: 10.1111/raq.12604
|
[60] |
DENG J M, MAI K S, CHEN L Q, et al. Effects of replacing soybean meal with rubber seed meal on growth, antioxidant capacity, non-specific immune response, and resistance to Aeromonas hydrophila in tilapia (Oreochromis niloticus×O. aureus)[J]. Fish Shellfish Immunol, 2015, 44(2): 436-444. doi: 10.1016/j.fsi.2015.03.018
|
[61] |
DODOU K. Investigations on gossypol: past and present developments[J]. Expert Opin Investig Drugs, 2005, 14(11): 1419-1434. doi: 10.1517/13543784.14.11.1419
|
[62] |
LIN Q R, LI C G, ZHA Q B, et al. Gossypol induces pyroptosis in mouse macrophages via a non-canonical inflammasome pathway[J]. Toxicol Appl Pharmacol, 2016, 292: 56-64. doi: 10.1016/j.taap.2015.12.027
|
[63] |
HE X, WU C Y, CUI Y H, et al. The aldehyde group of gossypol induces mitochondrial apoptosis via ROS-SIRT1-p53-PUMA pathway in male germline stem cell[J]. Oncotarget, 2017, 8(59): 100128-100140. doi: 10.18632/oncotarget.22044
|
[64] |
JIANG J, YE W, LIN Y C. Gossypol inhibits the growth of MAT-LyLu prostate cancer cells by modulation of TGFβ/Akt signaling[J]. Int J Mol Med, 2009, 24(1): 69-75.
|
[65] |
ZHANG M C, LIU H P, GUO R B, et al. Molecular mechanism of gossypol-induced cell growth inhibition and cell death of HT-29 human colon carcinoma cells[J]. Biochem Pharmacol, 2003, 66(1): 93-103. doi: 10.1016/S0006-2952(03)00248-X
|
[66] |
LIU Y L, LU Q S, XI L W, et al. Effects of replacement of dietary fishmeal by cottonseed protein concentrate on growth performance, liver health, and intestinal histology of largemouth bass (Micropterus salmoides)[J]. Front Physiol, 2021, 12: 2308.
|
[67] |
BIAN F, ZHOU H G, WANG C, et al. Effects of replacing fishmeal with different cottonseed meals on growth, feed utilization, haematological indexes, intestinal and liver morphology of juvenile turbot (Scophthalmus maximus L.)[J]. Aquac Nutr, 2017, 23(6): 1429-1439. doi: 10.1111/anu.12518
|
[68] |
TRIPATHI A, DEBELIUS J, BRENNER D A, et al. The gut-liver axis and the intersection with the microbiome[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(7): 397-411. doi: 10.1038/s41575-018-0011-z
|
[1] | Lihao TONG, Xiangyu WU, Liangfu HUANG, Jun ZENG, Yaohua SHI, Xianming TANG. Correlation analysis of light intensity and growth, photosynthetic pigment, color value of Betaphycus gelatinae[J]. South China Fisheries Science, 2021, 17(5): 79-85. DOI: 10.12131/20200256 |
[2] | FANG Wei, ZHOU Shengjie, ZHAO Wang, YANG Rui, HU Jing, YU Gang, MA Zhenhua. Correlation and path analysis of morphological traits to body mass of juvenile Thunnus albacores[J]. South China Fisheries Science, 2021, 17(1): 52-58. DOI: 10.12131/20200158 |
[3] | CHEN Jian, GUO Dan, ZHAI Ziqing, YU Dahui, BAI Lirong. Correlation analysis of morphological traits and body mass traits of Coelomactra antiquata[J]. South China Fisheries Science, 2021, 17(1): 45-51. DOI: 10.12131/20200180 |
[4] | ZHENG Xing, LIN Siqi, YANG Shouguo, ZHANG Xingzhi, VASQUEZ Herbert Ely, GU Zhifeng, WANG Aimin. Change and correlation analysis of pigment contents and color value during growth of Chlorella vulgaris[J]. South China Fisheries Science, 2021, 17(1): 32-38. DOI: 10.12131/20200076 |
[5] | WEI Haijun, DENG Zhenghua, CHEN Mingqiang, WANG Jijin, LI Youning, WANG Yu. Correlation and path analysis of quantitative traits of clam (Callista erycina)[J]. South China Fisheries Science, 2019, 15(6): 34-40. DOI: 10.12131/20190126 |
[6] | LI Shengjie, FAN Jiajia, JIANG Peng, BAI Junjie, SUN Jianguo, WU Jiankai, FEI Zhiping. Association analysis of SNPs and diplotype of HSC70-1 gene with growth traits in largemouth bass (Micropterus salmoides)[J]. South China Fisheries Science, 2018, 14(6): 74-80. DOI: 10.12131/20180086 |
[7] | HAN Tingting, QI Zhanhui, DAI Ming, LIAO Xiuli, WU Fengxia, GONG Xiuyu, FU Guiquan, HUANG Honghui. Study on urea concentration and urease activity of phytoplankton in different areas of Dapeng Cove[J]. South China Fisheries Science, 2016, 12(2): 7-12. DOI: 10.3969/j.issn.2095-0780.2016.02.002 |
[8] | GUO Huayang, CHEN Mingqiang, WANG Yu, JIANG Shigui, ZHANG Dianchang, YANG Qibin, LI Youning, ZHU Lichun, WU Kaichang. Correlation and path analysis of main economic traits of wild population of Trachycardium flavum[J]. South China Fisheries Science, 2013, 9(2): 1-8. DOI: 10.3969/j.issn.2095-0780.2013.02.001 |
[9] | CHEN Jinling, LAI Qiuming, SU Shuye, KE Yangyong. Study on variation characteristics and correlation analysis of major ecological factors in intensive shrimp ponds[J]. South China Fisheries Science, 2012, 8(4): 49-56. DOI: 10.3969/j.issn.2095-0780.2012.04.008 |
[10] | LIU Wei, SU Shengyan, DONG Zaijie, ZHANG Jianqiao, MA Liangxiao, LI Lingling, QV Jiangqi, YUAN Xinhua. Correlation analysis of microsatellite DNA markers with growth trait among 3 breeding populations of common carp[J]. South China Fisheries Science, 2012, 8(3): 17-24. DOI: 10.3969/j.issn.2095-0780.2012.03.003 |
1. |
陈苏南,孔雪,宋满宗,蔡月凤,智颖,申欣. 低温暴露对菲律宾蛤仔免疫指标和基因表达的影响. 大连海洋大学学报. 2025(01): 12-24 .
![]() | |
2. |
杨栋,韩雨婷,高葛琪,王杰,牛东红. 不同低盐驯化方式对缢蛏行为及生理的影响. 上海海洋大学学报. 2024(05): 1120-1131 .
![]() | |
3. |
张文馨,潘霞,沈锡权,徐永健. 盐度胁迫对幼体大海马基因转录表达的影响. 水生生物学报. 2021(05): 995-1004 .
![]() | |
4. |
张玉晗,谢晶. 包装充氧量对无水活运花鲈鳃组织结构及相关酶活性的影响. 食品科学. 2020(15): 269-274 .
![]() | |
5. |
李笑,曲艺,张倩倩,张天宇,曹瑞文,赵建民. 海水酸化和热应激对日本鼓虾氧化应激和能量代谢的影响. 海洋与湖沼. 2020(06): 1412-1421 .
![]() | |
6. |
王尧,曹善茂. 盐度对岩扇贝Na~+/K~+-ATP酶活性的影响. 科技风. 2019(07): 241-243+245 .
![]() | |
7. |
胡琼,李胜忠,曹景成,初洪伟. 葡萄糖、丙三醇和盐对厚唇裂腹鱼精子活力的调控研究. 南方水产科学. 2019(02): 38-46 .
![]() | |
8. |
陈丽梅,刘利华,胡宏辉,秦艺铭,周文礼,孙敬锋,郭永军. 温度突变对毛蚶不同组织抗氧化酶活性的影响. 水产科学. 2019(04): 435-442 .
![]() | |
9. |
朱克诚,刘宝锁,曹明,郭华阳,张楠,张殿昌. 华贵栉孔扇贝MEF2Cs基因克隆及表达特征分析. 淡水渔业. 2018(02): 32-38 .
![]() | |
10. |
林岗,饶小珍,吴静,岑万. 低盐胁迫对华贵栉孔扇贝抗氧化酶、Na~+/K~+-ATPase活力的影响. 福建师范大学学报(自然科学版). 2018(01): 71-78 .
![]() | |
11. |
李亚男,张海滨. 海洋无脊椎动物抗氧化酶研究进展. 海洋通报. 2018(03): 241-253 .
![]() | |
12. |
吕旭宁,王晓芹,吴亚林,姜娓娓,房景辉,方建光,王军威,张义涛,蒋增杰. 温度对凸壳肌蛤能量收支的影响. 渔业科学进展. 2018(04): 119-125 .
![]() | |
13. |
王芸,李正,段亚飞,王珺,黄忠,林黑着. 红景天提取物对凡纳滨对虾抗氧化系统及抗低盐度胁迫的影响. 南方水产科学. 2018(01): 9-19 .
![]() | |
14. |
杜俊鹏,王昭萍,于瑞海,马培振,张哲,李玲蔚,李鹏飞. 盐度对香港巨牡蛎♀×葡萄牙牡蛎♂杂交子代早期杂种优势的影响. 中国海洋大学学报(自然科学版). 2018(01): 31-39 .
![]() | |
15. |
李晓雨,田燚,王伟,李延涛,刘钢,郭然,丛佳. 低盐胁迫对白条双锯鱼相关生理指标的影响. 大连海洋大学学报. 2018(05): 614-619 .
![]() | |
16. |
罗伟,许艳,刘晓娟,王春芳. 水温对草鱼血清活性氧含量及抗氧化防御系统的影响. 淡水渔业. 2017(04): 3-7 .
![]() | |
17. |
刘甜雨,王清,陈慕雁. 热刺激对栉孔扇贝免疫功能和热休克蛋白表达的影响. 中国海洋大学学报(自然科学版). 2017(08): 31-43 .
![]() | |
18. |
方春华,乔琨,刘智禹,陈丽娇. 海洋生物中抗氧化酶的研究进展. 渔业研究. 2016(04): 331-342 .
![]() | |
19. |
吕小康,刘峰,楼宝,刘阳阳,徐冬冬,陈睿毅,詹炜,王立改,毛国民,马涛. 水温和饥饿对鮸鱼肝脏抗氧化酶的影响. 浙江海洋学院学报(自然科学版). 2016(05): 384-389 .
![]() | |
20. |
谭杰,陈振江,刘付少梅,唐啸尘,刘志刚. 温度和盐度对大珠母贝稚贝存活和生长的互作效应. 广东海洋大学学报. 2016(06): 44-51 .
![]() |