Citation: | YIN Xingjun, HUA Chuanxiang, ZHU Qingcheng. Analysis of morphological differences and discrimination between female and male Cololabis saira based on geometric morphometrics[J]. South China Fisheries Science, 2024, 20(6): 104-111. DOI: 10.12131/20240077 |
Pacific saury (Cololabis saira) is widely distributed in the Northwest Pacific Ocean and is one of the main targets of Chinese pelagic operations. To investigate the morphological differences between female and male individuals and differentiate the two sexes effectively, we applied geometric land mark method morphometrics for the first time on 150 Pacific saury samples which were collected from the Northwest Pacific high seas during May–November, 2022, so as to analyze their morphology and establish a sex differentiation model via discriminant analysis with fish images and biological data. The samples were divided into two batches: Batch 1 (107 individuals) was used for morphological analysis and model construction, while Batch 2 (43 individuals) was used to test the model's practical application. The results show that in the relative warp analysis, the first and second principal components explained 63.43% and 11.79% of the total variation, respectively, with good dimensionality reduction and scatter plot separation effects. Landmark I and II contributed cumulatively to 57.94% and 41.83% of the variance, respectively, indicating that these landmark types play a significant role in the discrimination between two sexes, whereas Landmark III had lesser influence. The results of the thin-plate spline analysis show that the morphological differences between them were mainly in the eyes, the front part of the trunk and the tail. The results of discriminant analysis and cross-validation of Batch 1 showed correct discrimination rates of 91.6% and 88.8%, respectively. When applying the model to Batch 2 for sex discrimination, the correct discrimination rate was 88.45%. Thus, geometric morphometrics analysis is an effective method for morphological studies and sex identification of C. saira.
[1] |
赵峰, 章龙珍, 庄平, 等. 鲟科鱼类性别鉴别技术的研究进展及其应用[J]. 海洋渔业, 2009, 31(2): 215-220.
|
[2] |
陈宇舒. 尖头塘鳢 (Eleotris oxycephala) 雌雄个体形态差异分析[J]. 渔业研究, 2023, 45(4): 346-355.
|
[3] |
韩伟国, 刘新富, 孟振, 等. 醋酸洋红染色技术在大菱鲆幼鱼生理性别鉴定中的应用[J]. 渔业科学进展, 2011, 32(6): 37-42.
|
[4] |
BLYTHE B, HELFRICH L A, BEAL W E, et al. Determination of sex and maturational status of striped bass (Morone saxatilis) using ultrasonic imaging[J]. Aquaculture, 1994, 125(1/2): 175-184.
|
[5] |
FERGUSON A, TAGGART B J, PRODOHL A P, et al. The application of molecular markers to the study and conservation of fish populations, with special reference to Salmo[J]. J Fish Biol, 2006, 47(1): 103-126.
|
[6] |
仇登高, 徐世宏, 刘鹰, 等. 超声成像技术在大西洋鲑早期性别及发育期鉴别的应用研究[J]. 海洋科学, 2016, 40(6): 23-29.
|
[7] |
毕宜慧, 张鑫宇, 李杰, 等. 暗纹东方鲀雌雄个体形态差异及其判别分析[J]. 海洋渔业, 2021, 43(5): 563-572.
|
[8] |
邵锋, 陈新军, 李纲, 等. 东黄海鲐鱼形态差异分析[J]. 上海水产大学学报, 2008, 17(2): 204-209.
|
[9] |
白明, 杨星科. 几何形态测量法在生物形态学研究中的应用[J]. 昆虫知识, 2007, 44(1): 143-147.
|
[10] |
韩霈武, 陈新军, 方舟, 等. 基于鱼体和耳石形态的东海两种鲐属鱼类判别分析[J]. 海洋渔业, 2020, 42(2): 161-169.
|
[11] |
SLICE D E. Modern morphometrics in physical anthropology [M]. New York: Springer US, 2005: 325-330.
|
[12] |
BRENO M, LEIRS H, VAN DONGEN S. Traditional and geometric morphometrics for studying skull morphology during growth in Mastomys natalensis (Rodentia: Muridae)[J]. J Mammal, 2011, 92(6): 1395-1406. doi: 10.1644/10-MAMM-A-331.1
|
[13] |
FRED L, BOOKSETINFL. Size and shape spaces for landmark data in two dimensions[J]. Stat Sci, 1986, 1(2): 175-184.
|
[14] |
BOOKSTEINFL. Morphometric tools for landmark data: geometry and biology[M]. Cambridge: Cambridge University Press, 1991: 18, 435.
|
[15] |
ROHLF F J, SLICE D E. Extensions of the procrustes method for the optimal superimposition of landmarks[J]. Syst Zool, 1990, 39(1): 40-59. doi: 10.2307/2992207
|
[16] |
朱清澄, 花传祥. 西北太平洋秋刀鱼渔业[M]. 北京: 海洋出版社, 2017: 1-2.
|
[17] |
NAKAYA M, MORIOKA T, FUKUNAGA K, et al. Growth and maturation of Pacific saury Cololabis saira under laboratory conditions[J]. Fish Sci, 2010, 76(1): 45-53. doi: 10.1007/s12562-009-0179-9
|
[18] |
张孝民, 石永闯, 李凡, 等. 基于MAXENT模型预测西北太平洋秋刀鱼潜在渔场[J]. 上海海洋大学学报, 2020, 29(2): 280-286.
|
[19] |
KIMURA N, OKADA Y, MAHAPATRA K. Relationship between saury fishing ground and sea surface oceanographic features determined from satellite data along the northeastern coast of Japan[J]. J Mar Sci Technol, 2004, 2(2): 1-12.
|
[20] |
朱文涛, 陈新军, 汪金涛, 等. 基于灰色系统的西北太平洋秋刀鱼资源丰度预测[J]. 广东海洋大学学报, 2018, 38(6): 13-17.
|
[21] |
石永闯, 朱清澄, 张衍栋, 等. 基于模型试验的秋刀鱼舷提网纲索张力性能研究[J]. 中国水产科学, 2016, 23(3): 704-712.
|
[22] |
花传祥, 高玉珍, 朱清澄, 等. 基于耳石微结构的西北太平洋秋刀鱼 (Cololabis saira) 年龄与生长研究[J]. 海洋学报, 2017, 39(10): 46-53.
|
[23] |
杨明树. 西北太平洋公海秋刀鱼繁殖生物学研究[D]. 上海: 上海海洋大学, 2017: 5-6.
|
[24] |
李非, 朱清澄, 花传祥, 等. 西北太平洋秋刀鱼主要体征及繁殖特性研究[J]. 水产科学, 2019, 38(2): 173-181.
|
[25] |
朱国平, 刘芳沁. 几何形态测量学及其在鱼类生态学研究中的应用进展[J]. 上海海洋大学学报, 2022, 31(5): 1180-1189.
|
[26] |
ICHII T, NISHIKAWA H, MAHAPATRA K, et al. Oceanographic factors affecting interannual recruitment variability of Pacific saury (Cololabis saira) in the central and western North Pacific[J]. Fish Oceanogr, 2018, 27(5): 445-457. doi: 10.1111/fog.12265
|
[27] |
ROHLF F J, BOOKSTEIN F L. Proceedings of the Michigan morphometrics workshop[M]. New York: University of Michigan Museum of Zoology, 1990: 1-380.
|
[28] |
张锋, 李萍. 几何形态测量学在古生物学研究中的应用概况[J]. 古生物学报, 2016, 55(4): 518-531.
|
[29] |
VISCOSI V, CARDINI A. Leaf morphology, taxonomy and geometric morphometrics: a simplified protocol for beginners[J]. PLoS One, 2018, 6(10): e25630.
|
[30] |
姜涛, 郑朝臣, 黄洪辉, 等. 基于地标点法的九龙江口和珠江口凤鲚和七丝鲚耳石形态学特征比较[J]. 南方水产科学, 2018, 14(6): 10-16.
|
[31] |
SAUER F G, PFITZNER W P, JÖST H, et al. Using geometric wing morphometrics to distinguish Aedes japonicus japonicus and Aedes koreicus[J]. Parasit Vectors, 2023, 16(1): 417-418. doi: 10.1186/s13071-023-06032-4
|
[32] |
KEMP F. Modern applied statistics with S[J]. J R Stat Soc Ser D Statist, 2003, 52(4): 704-705.
|
[33] |
AKINOBU W. How many landmarks are enough to characterize shape and size variation?[J]. PlOS One, 2018, 13(6): e0198341. doi: 10.1371/journal.pone.0198341
|
[34] |
CARDINI A, SEETAH K, BARKER G. How many specimens do I need? Sampling error in geometric morphometrics: testing the sensitivity of means and variances in simple randomized selection experiments[J]. Zoomorphology, 2015, 134(2): 149-163. doi: 10.1007/s00435-015-0253-z
|
[35] |
郁岳峰, 张勋, 黄洪亮, 等. 秋刀鱼舷提网集鱼方法的研究[J]. 浙江海洋学院学报(自然科学版), 2006(2): 154-156.
|
[36] |
CRESPI-ABRIL A C, JOSEBARO P, MORSAN E M, et al. Analysis of the ontogenetic variation in body and beak shape of the Illex argentinus inner shelf spawning groups by geometric morphometrics[J]. J Mar Biol Assoc UK, 2010, 90(3): 547-553. doi: 10.1017/S0025315409990567
|
[37] |
ZISCHKE T M, GRIFFITHS P S, TIBBETTS R I, et al. Stock identification of wahoo (Acanthocybium solandri) in the Pacific and Indian Oceans using morphometrics and parasites[J]. ICES J Mar Sci, 2013, 70(1): 164-172. doi: 10.1093/icesjms/fss164
|
[38] |
陈楠桦, 梁仁杰, 白义, 等. 基于几何形态测量学的四种滨螺形态差异与系统发生关系研究[J]. 海洋与湖沼, 2018, 49(6): 1365-1374.
|
[39] |
张秀霞, 朱巧莹, 赵俊. 利用几何形态测量学方法分析唐鱼群体的形态变异[J]. 水产学报, 2017, 41(9): 1365-1373.
|
[40] |
韩霈武, 王超, 方舟, 等. 基于几何形态测量的不同群体柔鱼个体形态生长变化[J]. 中国水产科学, 2022, 29(3): 483-493.
|
[41] |
侯刚, 王学锋, 朱立新, 等. 基于几何形态测量学的4种金线鱼矢耳石识别研究[J]. 海洋与湖沼, 2014, 45(3): 496-503. doi: 10.11693/hyhz20130300006
|
[42] |
侯刚, 刘丹丹, 冯波, 等. 基于地标点几何形态测量法识别北部湾4种白姑鱼矢耳石形态[J]. 中国水产科学, 2013, 20(6): 1293-1302.
|