HU Jiazhen, SUN Jialong, HUANG Xiaohua, ZHU Guohao, TAO Qiyou, YUAN Taiping, LI Gen, PANG Guoliang, HU Yu, LI Mingyang. A method for estimating quantity of Trachinotus ovatus in marine cage aquaculture based on high-frequency horizontal mechanical scanning sonar image[J]. South China Fisheries Science, 2024, 20(5): 113-125. DOI: 10.12131/20240042
Citation: HU Jiazhen, SUN Jialong, HUANG Xiaohua, ZHU Guohao, TAO Qiyou, YUAN Taiping, LI Gen, PANG Guoliang, HU Yu, LI Mingyang. A method for estimating quantity of Trachinotus ovatus in marine cage aquaculture based on high-frequency horizontal mechanical scanning sonar image[J]. South China Fisheries Science, 2024, 20(5): 113-125. DOI: 10.12131/20240042

A method for estimating quantity of Trachinotus ovatus in marine cage aquaculture based on high-frequency horizontal mechanical scanning sonar image

More Information
  • Received Date: March 05, 2024
  • Revised Date: June 10, 2024
  • Accepted Date: June 23, 2024
  • Available Online: June 25, 2024
  • To estimate the quantity of Trachinotus ovatus in marine cages accurately, a method for estimating the quantity of fish is proposed by using high-frequency horizontal mechanical scanning sonar and deep learning technology. Differentiating water layers and clustering layer by layer to realize counting is the main way of this method, which mainly involves three parts: fish identification, fish cluster and fish quantity fitting. Firstly, high-frequency horizontal mechanical scanning sonar is used to conduct spiral detection on marine cages to obtain fish image information, which is labeled to build training data set of improved CS-YOLOv8s. After training, the CS-YOLOv8s model is used to recognize fish location information in the images. Secondly, the cages are divided into water layers with a water depth spacing of 40 cm, and the identification coordinate data of each water layer are clustered through DBSCAN method to generate fish quantity data of each water layer. Finally, the quantity data of each water layer is fitted with the given quantity of fish in the cage, and the fitting model of fish quantity is established. The results show that in the quantitative experiment of marine cages, the accuracy of this method is 87.14%, and it can achieve a good estimation of the quantity of T. ovatus.

  • [1]
    刘伟峰, 张朝晖, 邢文秀, 等. 渔业生产方式创新视角下我国海洋牧场的概念应用与优化路径[J]. 生态经济, 2024, 40(8): 137-144.
    [2]
    袁华荣, 陈丕茂. 广东省海洋牧场发展现状、问题与对策[J]. 广东农业科学, 2022, 49(7): 141-154.
    [3]
    于盟盟, 任娟, 唐华强, 等. 日照市海洋牧场建设现状及思考[J]. 山西农经, 2022(12): 117-119.
    [4]
    吕龙德, 熊莹. 深远海养殖风头劲我国造船业迎重大利好[J]. 广东造船, 2023, 42(3): 6-12.
    [5]
    沈晨, 张培珍, 刘欢, 等. 基于VMD-Hilbert变换的大型网箱养殖鱼群声特性研究[J]. 吉林大学学报(信息科学版), 2023, 41(6): 1054-1062.
    [6]
    刘世晶, 李国栋, 刘晃, 等. 中国水产养殖装备发展现状[J]. 水产学报, 2023, 47(11): 190-203.
    [7]
    王静, 李蔚然, 刘业强, 等. 基于计算机视觉的养殖动物计数方法研究综述[J]. 农业机械学报, 2023, 54(S1): 315-329.
    [8]
    施继军, 施佐帆, 傅荣兵. 舟山“岱衢族”大黄鱼深水网箱养殖技术[J]. 浙江农业科学, 2023, 64(8): 1987-1990.
    [9]
    张涵钰, 李振波, 李蔚然, 等. 基于机器视觉的水产养殖计数研究综述[J]. 计算机应用, 2023, 43(9): 2970-2982.
    [10]
    崔斌. 视觉识别技术在智慧实验室中的应用研究[J]. 信息与电脑(理论版), 2023, 35(8): 172-174.
    [11]
    傅梁著. 基于视觉感知技术的鱼类行为辨别方法研究[D]. 大连: 大连理工大学, 2022: 15.
    [12]
    FENG S X, YANG X T, LIU Y, et al. Fish feeding intensity quantification using machine vision and a lightweight 3D ResNet-GloRe network[J]. Aquac Engin, 2022, 98: 102244. doi: 10.1016/j.aquaeng.2022.102244
    [13]
    YANG L, CHEN Y Y, SHEN T, et al. A BlendMask-VoVNetV2 method for quantifying fish school feeding behavior in industrial aquaculture[J]. Comput Electron Agr, 2023, 211: 108005. doi: 10.1016/j.compag.2023.108005
    [14]
    LAGARDE R, PEYRE J, AMILHAT E, et al. In situ evaluation of European eel counts and length estimates accuracy from an acoustic camera (ARIS)[J]. Knowl Manag Aquat Ec, 2020, 421: 44. doi: 10.1051/kmae/2020037
    [15]
    乐梓予. 基于声学技术有效保护近海渔业资源的探索与建议[J]. 中国水产, 2022(5): 58-60.
    [16]
    彭战飞, 沈蔚, 张进. 基于成像声呐的鱼类长度测量误差与修正模型研究[J]. 南方水产科学, 2023, 19(4): 31-40. doi: 10.12131/20220279
    [17]
    周吉祥, 刘慧敏, 陆凯, 等. 深海ARV在海洋资源调查中的应用及展望[J]. 海洋地质前沿, 2024, 40(2): 93-102.
    [18]
    朱俊, 封磊. 基于声呐图像的鱼群识别与计数方法[J]. 南京理工大学学报, 2023, 47(6): 782-789.
    [19]
    刘慧杰, 王从峰, 刘德富, 等. 双频识别声呐在鱼类资源调查中的应用进展[J]. 三峡大学学报(自然科学版), 2015, 37(3): 7-11.
    [20]
    FENG Y H, WEI Y G, SUN S, et al. Fish abundance estimation from multi-beam sonar by improved MCNN[J]. Aquat Ecol, 2023, 57(4): 895-911. doi: 10.1007/s10452-023-10007-z
    [21]
    田玉先, 冯德军, 张华, 等. 通过小型探鱼无人船探测大型围网养殖区大黄鱼的分布特性[J]. 水产学报, 2022, 46(11): 2084-2096.
    [22]
    JING D X, ZHOU H Y, HAN J, et al. Fish abundance estimation based on an imaging sonar[J]. Appl Acoust, 2019, 38(4): 705-711.
    [23]
    沈蔚, 朱振宏, 张进, 等. 基于双频识别声呐的鱼类目标识别与计数[J]. 渔业现代化, 2020, 47(6): 81-87. doi: 10.3969/j.issn.1007-9580.2020.06.012
    [24]
    周权, 杜浩, 王洁, 等. 基于环境DNA的长江中华鲟分布特征探究[J]. 环境工程技术学报, 2024, 14(1): 71-78.
    [25]
    SUN Y, ZHANG Y H, WANG H Y, et al. SES-YOLOv8n: automatic driving object detection algorithm based on improved YOLOv8[J]. Signal Image Video P, 2024, 18(5): 3983-3992. doi: 10.1007/s11760-024-03003-9
    [26]
    LI Y H, YAO T, PAN Y W, et al. Contextual transformer networks for visual recognition[J]. IEEE T-PAMI, 2023, 45(2): 1489-1500. doi: 10.1109/TPAMI.2022.3164083
    [27]
    ZHAO L, WEI Z J, LI Y T, et al. SEDG-Yolov5: a lightweight traffic sign detection model based on knowledge distillation[J]. Electronics, 2023, 12(2): 305-305. doi: 10.3390/electronics12020305
    [28]
    WU G Q, CAO L Q, TIAN H Y, et al. HY-DBSCAN: a hybrid parallel DBSCAN clustering algorithm scalable on distributed-memory computers[J]. J Parallel Distributed Comput, 2022, 168: 57-69. doi: 10.1016/j.jpdc.2022.06.005
    [29]
    CHEN G, HUANG W X, RONCH A D, et al. BP neural Network-Kalman filter fusion method for unmanned aerial vehicle target tracking[J]. P I Mech Eng C-J Mec, 2023, 237(18): 4203-4212. doi: 10.1177/0954406220983864
    [30]
    HAI T N, NGUYEN M N, PHUNG L D, et al. Anomalies detection in chest X-rays images using faster R-CNN and YOLO[J]. Vietnam J Comput Sci, 2023, 10(4): 499-515. doi: 10.1142/S2196888823500094
    [31]
    CHOI W, CHA Y J. SDDNet: Real-time crack segmentation[J]. IEEE TIE, 2020, 67(9): 8016-8025.
    [32]
    YU C, SHIN Y. SAR ship detection based on improved YOLOv5 and BiFPN[J]. ICT Express, 2024, 10(1): 28-33. doi: 10.1016/j.icte.2023.03.009
    [33]
    DING F. Least squares parameter estimation and multi-innovation least squares methods for linear fitting problems from noisy data[J]. J Comput Appl Math, 2023, 426: 115107. doi: 10.1016/j.cam.2023.115107
    [34]
    SELVARAJ P, KWON O M, LEE S H, et al. Disturbance rejections of polynomial fuzzy systems under equivalent-input-disturbance estimator approach[J]. Fuzzy Set Syst, 2024, 488: 109013. doi: 10.1016/j.fss.2024.109013
    [35]
    雍李明, 张语克, 赵丽媛, 等. 中华白海豚生态学研究进展[J]. 生物多样性, 2023, 31(5): 145-160.
    [36]
    陈凯骅, 陈海洋, 李惠东, 等. 码头声波驱鱼技术的研究与应用[J]. 电力科技与环保, 2020, 36(3): 60-62.
    [37]
    朱振宏. 基于成像声呐的鱼类资源评估关键技术研究[D]. 上海: 上海海洋大学, 2021: 46-52.
    [38]
    荆丹翔, 周晗昀, 韩军, 等. 基于成像声呐DIDSON的水域内鱼群数量估计方法[J]. 应用声学, 2019, 38(4): 705-711.
    [39]
    崔智强, 祝捍皓, 宋伟华, 等. 一种基于前视声呐的养殖网箱内鱼群数量评估方法[J]. 渔业现代化, 2023, 50(4): 107-117. doi: 10.3969/j.issn.1007-9580.2023.04.013
  • Related Articles

    [1]LUO Yingying, HUANG Hui, LI Laihao, HAO Shuxian, CHEN Shengjun, WEI Ya, CEN Jianwei, XIANG Huan. Quality improvement and mechanism analysis of non-rinsing tilapia surimi gel[J]. South China Fisheries Science, 2025, 21(2): 164-173. DOI: 10.12131/20240238
    [2]CUI Qiaoyan, LI Laihao, CHEN Tianyu, CHEN Shengjun, HUANG Hui, ZHAO Yongqiang, LI Chunsheng. Improvement of gel strength of fermented tilapia surimi by Lactiplantibacillus plantarum through inhibition of protein hydrolysis[J]. South China Fisheries Science, 2024, 20(4): 1-10. DOI: 10.12131/20240060
    [3]WANG Xin, LI Mengzhe, ZHANG Wei, KONG Yunfei, XIONG Zhiyu, SHI Tong, BAO Yulong, YUAN Li, ZHANG Shiyong, WANG Minghua, CHEN Xiaohui, GAO Ruichang. Evaluation of gel properties of heat-induced surimi of Ictalurus punctatus from four genealogies[J]. South China Fisheries Science, 2023, 19(3): 164-172. DOI: 10.12131/20220198
    [4]GE Mengmeng, SHEN Jiandong, TANG Xiaohang, XIA Wenshui, XU Yanshun. Optimization of thermal sterilization process for low-acid and acidified instant laver[J]. South China Fisheries Science, 2022, 18(6): 127-136. DOI: 10.12131/20220003
    [5]QI Bo, YANG Shaoling, WANG Yueqi, HU Xiao, YANG Xianqing, PAN Chuang, LI Laihao, WANG Lunan. Effect of carboxymethyl agar on gel properties of tilapia surimi[J]. South China Fisheries Science, 2022, 18(2): 83-89. DOI: 10.12131/20210311
    [6]LIU Fangfang, LIN Wanling, HAN Yingxue, LI Laihao, LI Chunsheng, YANG Xianqing, ZHOU Wenguo. Basic properties of surimi gel of five freshwater fish[J]. South China Fisheries Science, 2021, 17(2): 114-121. DOI: 10.12131/20200220
    [7]YIN Min, XIE Chongyou, PU Deyong, HUANG Jing, WANG Zhijian. Microstructure of oogenesis in Sinibrama taeniatus[J]. South China Fisheries Science, 2019, 15(2): 127-132. DOI: 10.12131/20180181
    [8]YU Shanshan, WANG Qinglin, DONG Yunwei. Effects of parent acclimation and heat-shock at gastrula on growth and development of sea cucumber larvae[J]. South China Fisheries Science, 2015, 11(4): 46-52. DOI: 10.3969/j.issn.2095-0780.2015.04.007
    [9]ZHANG Yuemei, BAO Yulong, LUO Yongkang, WANG Hang. Changes of biogenic amines and quality indicators of grass carp (Ctenpharyngodon idellus) during chilled storage and effect on biogenic amines during thermal processing[J]. South China Fisheries Science, 2013, 9(4): 56-61. DOI: 10.3969/j.issn.2095-0780.2013.04.010
    [10]HUANG Jiansheng, LU Weihua, ZOU Weili, WANG Yao. Determination of residual polychlorinated biphenyls (PCBs) in blubber of whale by gel permeation chromatography and gas chromatography/mass spectrometry[J]. South China Fisheries Science, 2009, 5(4): 9-12. DOI: 10.3969/j.issn.1673-2227.2009.04.002
  • Cited by

    Periodical cited type(11)

    1. 张婷娟,吴风超,周纷. 市售生姜油对白鲢鱼糜凝胶品质特性的影响. 食品科技. 2025(01): 146-153 .
    2. 金铮,于婉莹,赵文宇,刘宇轩,祁立波,白帆,董秀萍. 鲟鱼重组鱼排3D打印特性的研究. 食品与发酵工业. 2024(03): 241-249 .
    3. 步营,程亚佳,厉寒,朱文慧,励建荣,李学鹏,季广仁. 发芽糙米匀浆对带鱼鱼糜凝胶特性的影响. 农业工程学报. 2024(18): 292-301 .
    4. 林雅文,刘佳晨,李艾靑,高月,励建荣,李学鹏. 不同干燥方法对南美白对虾理化特性和微观结构的影响. 食品科学. 2023(19): 74-81 .
    5. 邹怡茜,陈海强,潘卓官,肖苏尧,周爱梅. 超高压耦合热处理对鳙鱼鱼糜凝胶特性和水分迁移的影响. 现代食品科技. 2022(12): 272-280 .
    6. 宋春勇,洪鹏志,周春霞,陈艾霖,冯瑞. 大豆油和预乳化大豆油对金线鱼鱼糜凝胶品质的影响. 食品科学. 2021(08): 90-97 .
    7. 梁雯雯,杨天,郑志红,郭建,陈胜军,汪秋宽,丛海花. 升温方式对二段加热鲢鱼糜水分分布和品质的影响. 大连海洋大学学报. 2021(04): 646-652 .
    8. 刘芳芳,林婉玲,李来好,吴燕燕,杨少玲,黄卉,杨贤庆,林织. 海鲈鱼糜加工及凝胶形成过程中蛋白质的变化机理. 食品科学. 2020(14): 15-22 .
    9. 郑静静,林琳,张艳凌,陆剑锋,姜绍通. 不同解冻方式对熟制小龙虾理化特性的比较分析. 现代食品科技. 2020(09): 188-194+108 .
    10. 李钊,李宁宁,刘玉,赵圣明,康壮丽,朱明明,计红芳,何鸿举,马汉军. 超高压对肌原纤维蛋白结构及其凝胶特性影响的研究进展. 食品与发酵工业. 2020(21): 304-309 .
    11. 王菲,隋好林. 不同水产养殖区福寿鱼的鱼糜凝胶品质研究. 江西水产科技. 2019(06): 10-14 .

    Other cited types(14)

Catalog

    Article views (1165) PDF downloads (62) Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return