ZHAO Lianling, LIU Huaxue, RAO Yiyong, LIAO Xiuli, DAI Ming, HUANG Honghui. Seawater quality assessment method based on improved grey relational degree clustering: a case study of Daya Bay[J]. South China Fisheries Science, 2024, 20(1): 141-150. DOI: 10.12131/20230031
Citation: ZHAO Lianling, LIU Huaxue, RAO Yiyong, LIAO Xiuli, DAI Ming, HUANG Honghui. Seawater quality assessment method based on improved grey relational degree clustering: a case study of Daya Bay[J]. South China Fisheries Science, 2024, 20(1): 141-150. DOI: 10.12131/20230031

Seawater quality assessment method based on improved grey relational degree clustering: a case study of Daya Bay

More Information
  • Received Date: March 03, 2023
  • Revised Date: September 21, 2023
  • Accepted Date: November 24, 2023
  • Available Online: November 28, 2023
  • Marine environmental quality assessment is the basis of marine environmental management, and its accuracy depends on the level of marine environmental monitoring and evaluation. In order to establish a scientific and effective indicator evaluation system and analyze the current seawater quality situation in western Daya Bay accurately, we carried out an exploration and research on sea water quality assessment in Daya Bay nuclear power sea area by improving grey relational degree clustering and combining it with hierarchical clustering. The evaluation results show that for relative evaluation of seawater quality, the proportions of Class I, Class II and Class III stations were 20.83%, 66.67% and 12.5%, respectively, which was an overall good result. Comparing the the four seasons, it is found that the average absolute correlation followed a descending order of summer (0.747 9) > winter (0.734 5) > spring (0.729 0) > autumn (0.709 7). The seawater quality was better in summer but worse in autumn. According to the evaluation results, the 24 stations in Daya Bay can be divided into three areas, which is consistent with the actual production, living conditions around Daya Bay and field survey, proving the operability of this evaluation method.

  • [1]
    申雅琪. 中国海域水质监测网优化与综合评价方法研究[D]. 上海: 上海交通大学, 2013: 1.
    [2]
    PAUL B, MEGAN L, BERTRAM O, et al. A review of methods for analysing spatial and temporal patterns in coastal water quality[J]. Ecol Indic, 2011, 11(1): 103-114. doi: 10.1016/j.ecolind.2009.11.001
    [3]
    林小苹, 黄长江, 林福荣, 等. 海水富营养化评价的主成分-聚类分析方法[J]. 数学的实践与认识, 2004(12): 69-74.
    [4]
    马丽. 海湾生态系统健康评价方法与应用研究[D]. 厦门: 厦门大学, 2017: 93-108.
    [5]
    林琳, 李纯厚, 杜飞雁, 等. 基于 GIS 的大亚湾海域生态环境质量综合评价[J]. 南方水产, 2007, 3(5): 19-25.
    [6]
    杜飞雁, 李纯厚, 廖秀丽, 等. 大亚湾海域浮游动物生物量变化特征[J]. 海洋环境科学, 2006, 25(A01): 37-39.
    [7]
    方良, 李纯厚, 杜飞雁, 等. 大亚湾海域浮游动物生态特征[J]. 生态学报, 2010, 30(11): 2981-2991.
    [8]
    廖秀丽, 李纯厚, 杜飞雁, 等. 2003~2005年大亚湾水螅水母类生态研究[J]. 海洋环境科学, 2006, 25(S1): 48-51.
    [9]
    党耀国, 尚中举, 王俊杰, 等. 基于面板数据的灰色指标关联模型构建及其应用[J]. 控制与决策, 2019(5): 1077-1084.
    [10]
    张燕军, 孙有朝, 刘璐. 基于灰色关联度的人机系统功能聚类方法[J]. 机械工程与自动化, 2016(6): 21-22. doi: 10.3969/j.issn.1672-6413.2016.06.009
    [11]
    岑詠霆. 旅行社基于灰色关联度及熵权分析的聚类研究[J]. 工业工程与管理, 2012, 17(3): 113-116. doi: 10.3969/j.issn.1007-5429.2012.03.020
    [12]
    郭三党, 王玲玲, 刘思峰, 等. 基于最大灰色关联度的聚类方法分析[J]. 数学的实践与认识, 2013, 43(6): 195-201.
    [13]
    吴风霞, 黄洪辉, 戴明, 等. 大鹏澳浮游纤毛虫群落与环境因子间的关系[J]. 南方水产科学, 2017, 13(1): 1-9. doi: 10.3969/j.issn.2095-0780.2017.01.001
    [14]
    王友绍, 王肇鼎, 黄良民. 近 20 年来大亚湾生态环境的变化及其发展趋势[J]. 热带海洋学报, 2004, 23(5): 85-95.
    [15]
    王肇鼎, 练健生, 胡建兴, 等. 大亚湾生态环境的退化现状与特征[J]. 生态科学, 2003, 22(4): 313-320. doi: 10.3969/j.issn.1008-8873.2003.04.006
    [16]
    MAGALHAES C, TANIGUCHI S, CASCAES M, et al. PCBs, PBDEs and organochlorine pesticides in crabs Hepatus pudibundus and Callinectes danae from Santos Bay, State of São Paulo, Brazil[J]. Mar Pollut Bull, 2012, 64(3): 662-667. doi: 10.1016/j.marpolbul.2011.12.020
    [17]
    ISOBE T, OSHIHOI T, HAMADA H, et al. Contamination status of POPs and BFRs and relationship with parasitic infection in finless porpoises (Neophocaena phocaenoides) from Seto Inland Sea and Omura Bay, Japan[J]. Mar Pollut Bull, 2011, 63(5): 564-571.
    [18]
    HU B Q, LI J, ZHAO J T, et al. Heavy metal in surface sediments of the Liaodong Bay, Bohai Sea: distribution, contamination, and sources[J]. Environ Monit Assess, 2013, 185(6): 5071-5083. doi: 10.1007/s10661-012-2926-0
    [19]
    杨清良, 林金美. 大亚湾核电站邻近水域春季浮游植物的分布及其小时间尺度的变化特征[J]. 海洋学报 (中文版), 1991(1): 102-113.
    [20]
    SONG X Y, HUANG L M, ZHANG J L, et al. Harmful algal blooms (HABs) in Daya Bay, China: an in situ study of primary production and environmental impacts[J]. Mar Pollut Bull, 2009, 58(9): 1310-1318. doi: 10.1016/j.marpolbul.2009.04.030
    [21]
    LIU H X, SONG X Y, HUANG L M, et al. Diurnal variation of phytoplankton community in a high frequency area of HABs: Daya Bay, China[J]. Chin J Oceanol Lim, 2011, 29(4): 800-806. doi: 10.1007/s00343-011-0509-5
    [22]
    SUN C C, WANG Y S, WU M L, et al. Seasonal variation of water quality and phytoplankton response patterns in Daya Bay, China[J]. Int J Environ Res Public Health, 2011, 8(7): 2951-2966. doi: 10.3390/ijerph8072951
    [23]
    JIANG Z Y, WANG Y S, CHENG H, et al. Spatial variation of phytoplankton community structure in Daya Bay, China[J]. Ecotoxicology, 2015, 24(7/8): 1450-1458.
    [24]
    金亮, 徐华林, 张志敏, 等. 大亚湾春秋季鱼类种类组成及年龄结构分析[J]. 应用海洋学学报, 2011, 30(1): 71-80. doi: 10.3969/J.ISSN.1000-8160.2011.01.011
    [25]
    王聪, 林军, 陈丕茂, 等. 年平均风场作用下大亚湾水交换的数值模拟[J]. 上海海洋大学学报, 2009, 18(3): 351-358.
    [26]
    薛向明, 李锐, 刘保生, 等. 大亚湾核电基地氡浓度水平调查与评估[J]. 核电子学与探测技术, 2020, 40(3): 522-526.
    [27]
    陈天然, 余克服, 施祺, 等. 全球变暖和核电站温排水对大亚湾滨珊瑚钙化的影响[J]. 热带海洋学报, 2011, 30(2): 1-9.
    [28]
    廖秀丽, 黄洪辉, 齐占会, 等. 亚热带海湾养殖环境综合分级定量评价研究[J]. 南方水产科学, 2020, 16(1): 98-109.
  • Related Articles

    [1]HU Xiaojuan, YANG Keng, WEN Guoliang, SU Haochang, XU Yunna, XU Chuangwen, XU Yu, XU Wujie, CAO Yucheng. Algicidal effect of bacteria CZBC1 on Microcystis aeruginosa in chloride type saline-alkali water[J]. South China Fisheries Science, 2024, 20(5): 169-175. DOI: 10.12131/20240142
    [2]Cover[J]. South China Fisheries Science, 2023, 19(4).
    [3]Cover[J]. South China Fisheries Science, 2023, 19(3).
    [4]cover[J]. South China Fisheries Science, 2022, 18(6).
    [5]cover[J]. South China Fisheries Science, 2022, 18(5).
    [6]cover[J]. South China Fisheries Science, 2022, 18(4).
    [7]cover[J]. South China Fisheries Science, 2022, 18(3).
    [8]WANG Hewei, ZHANG Zhe, MA Shengwei, CHEN Haigang, HUANG Zhifei, GONG Xiuyu, CAI Wengui, JIA Xiaoping. Effect of perfluorooctane sulfonate potassium on glutathione content and glutathione S-transferase activity of red sea bream[J]. South China Fisheries Science, 2012, 8(4): 23-28. DOI: 10.3969/j.issn.2095-0780.2012.04.004
    [9]CENG Shaokui, YANG Ping, CHEN Xiuhong. Study on the removal of fish odour and bitter from protein hydrolysates of tilapia by-products by microorganism fermentation[J]. South China Fisheries Science, 2009, 5(4): 58-63. DOI: 10.3969/j.issn.1673-2227.2009.04.011
    [10]CHEN Haigang, MA Shengwei, LIN Qin, GAN Juli, CAI Wengui, JIA Xiaoping. Effects of tributyltin chloride (TBTCl) on SOD activities, MDA contents and GPx activities in gill and liver of the black porgy (Sparus macrocephalus)[J]. South China Fisheries Science, 2009, 5(2): 23-27. DOI: 10.3969/j.issn.1673-2227.2009.02.004
  • Cited by

    Periodical cited type(3)

    1. 万树杰,陈新军. 基于机器学习的西南印度洋深海散射层声学资源密度预测. 上海海洋大学学报. 2024(06): 1357-1368 .
    2. 赵旺,陈旭,陈明强,黄星美,邓正华,温为庚,王江勇. 鸢乌贼为蛋白源的方斑东风螺人工配合饲料养殖研究. 广东农业科学. 2023(04): 115-122 .
    3. 田振中,樊丽花,董海隆. 融合随机森林与多变量灰色的道路交通事故预测模型研究. 警察技术. 2023(05): 78-81 .

    Other cited types(4)

Catalog

    Article views (84) PDF downloads (35) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return