LI Haohua, LIAO Tao, BAI Chan, QIU Liang, ZU Xiaoyan, LI Hailan, CHEN Liping, XIONG Guangquan, WANG Juguang. Effects of pre-transport density and temperature domestication on simulated transport of juvenile Ictalurus punctatus[J]. South China Fisheries Science, 2024, 20(2): 160-171. DOI: 10.12131/20230154
Citation: LI Haohua, LIAO Tao, BAI Chan, QIU Liang, ZU Xiaoyan, LI Hailan, CHEN Liping, XIONG Guangquan, WANG Juguang. Effects of pre-transport density and temperature domestication on simulated transport of juvenile Ictalurus punctatus[J]. South China Fisheries Science, 2024, 20(2): 160-171. DOI: 10.12131/20230154

Effects of pre-transport density and temperature domestication on simulated transport of juvenile Ictalurus punctatus

More Information
  • Received Date: August 08, 2023
  • Revised Date: September 26, 2023
  • Accepted Date: December 04, 2023
  • Available Online: December 12, 2023
  • To explore the effects of different pre-transport acclimation methods on water quality, biochemical parameters and tissue structure of juvenile Ictalurus punctatus during transportation, and to provide references for transportation of juvenile I. punctatus, we conducted pre-transport intensive acclimation and temperature acclimation. The pre-transport intensive acclimation involved fish-to-water ratios of 1∶2, 1∶3 and 1∶4, and the temperature acclimation was at 14, 19 and 24 ℃. The simulation transport lasted for 18 h, and we investigated the changes in water quality (Ammonia nitrogen, pH), biochemical parameters [Glucose (Glu)、cortisol (Cor), lactate dehydrogenase (LDH), catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA)] as well as organizational structure (Skin and intestine) at different time (0th, 2nd, 6th, 18th hour) and 24-hour recovery after transport. The results show that pre-transport intensive acclimation with a fish-to-water ratio of 1∶4 and a temperature of 19 ℃ had lower ammonia nitrogen levels than the other treatments (P<0.05). Glu, Cor, LDH, CAT, SOD and MDA levels were higher than the other groups, and there was minimal damage to the skin and intestinal structures. In conclusion, pre-transport intensive acclimation with a fish-to-water ratio of 1∶4 and a temperature of 19 ℃ can improve anti-stress capacity effectively during transportation of juvenile I. punctatus.

  • [1]
    WANG J G, XIONG G Q, BAI C, et al. Anesthetic efficacy of two plant phenolics and the physiological response of juvenile Ictalurus punctatus to simulated transport[J]. Aquaculture, 2021, 538: 736566. doi: 10.1016/j.aquaculture.2021.736566
    [2]
    孙学亮, 杨树元, 陈成勋, 等. 捕捞胁迫对半滑舌鳎血液生化指标的影响[J]. 长江大学学报 (自然科学版), 2012, 9(4): 28-32.
    [3]
    BISWAL A, SRIVASTAVA P P, PAL P, et al. A multi-biomarker approach to evaluate the effect of sodium chloride in alleviating the long-term transportation stress of Labeo rohita fingerlings[J]. Aquaculture, 2021, 531: 735979. doi: 10.1016/j.aquaculture.2020.735979
    [4]
    赵忠波, 胡培培, 刘汝鹏, 等. 运输时间和MS-222浓度对翘嘴鲌皮质醇、乳酸及氧气袋内水质的影响[J]. 淡水渔业, 2016, 46(2): 94-98.
    [5]
    林琳. 环境胁迫对豹纹鳃棘鲈 (Plectropomus leopardus) 生长及血液生化指标的影响[D]. 天津: 天津农学院, 2016: 48.
    [6]
    LIU H Y, FU Z Y, YU G, et al. Effect of transport density on greater amberjack (Seriola dumerili) stress, metabolism, antioxidant capacity and immunity[J]. Front Mar Sci, 2022, 9: 1-12.
    [7]
    ZENG P, CHEN T J, SHEN J. Effects of cold acclimation and storage temperature on crucian carp (Carassius auratus gibelio) in a waterless preservation[J]. Fish Physiol Biochem, 2014, 40(3): 973-982. doi: 10.1007/s10695-013-9898-z
    [8]
    ZHANG R, WU G T, WANG X W, et al. Potential benefits of exogenous neurotransmitters in alleviating transport stress in koi carp, Cyprinus carpio[J]. Aquaculture, 2022, 558: 738409. doi: 10.1016/j.aquaculture.2022.738409
    [9]
    朱乾峰, 陈鹏文, 范秀萍, 等. 珍珠龙胆石斑鱼低温有水保活条件优化[J]. 食品工业科技, 2018, 39(22): 276-282.
    [10]
    ADINEH H, NADERI M, HAMIDI K M, et al. Biofloc technology improves growth, innate immune responses, oxidative status, and resistance to acute stress in common carp (Cyprinus carpio) under high stocking density[J]. Fish Shellfish Immun, 2019, 95: 440-448. doi: 10.1016/j.fsi.2019.10.057
    [11]
    SCHELKLE B, DOETJES R, CABLE J. The salt myth revealed: treatment of gyrodactylid infections on ornamental guppies, Poecilia reticulata[J]. Aquaculture, 2011, 311(1): 74-79.
    [12]
    袁仲瑾, 岑剑伟, 李来好, 等. 低温暂养对珍珠龙胆石斑鱼存活、非特异性免疫及抗氧化指标的影响[J]. 南方水产科学, 2022, 18(6): 118-126.
    [13]
    TIE H M, FENG L, JIANG W D, et al. Dietary exogenous supplementation of nucleotides strengthens the disease resistance, antioxidant capacity and immunity in the gill of on-growing grass carp (Ctenopharyngodon idella) following a challenge with Flavobacterium columnare[J]. Aquaculture, 2021, 540: 736729. doi: 10.1016/j.aquaculture.2021.736729
    [14]
    田立立, 万金娟, 孟祥龙, 等. 高pH急性和慢性胁迫对克氏原螯虾非特异性免疫和抗氧化能力的影响[J]. 淡水渔业, 2021, 51(4): 101-107.
    [15]
    张坤, 周结倩, 范秀萍, 等. 禁食暂养对卵形鲳鲹有水保活生理响应的影响[J]. 广东海洋大学学报, 2022, 42(1): 44-49.
    [16]
    BI B L, YUAN Y, ZHAO Y, et al. Effect of crowding stress on growth performance, the antioxidant system and humoral immunity in hybrid sturgeon[J]. Aquac Rep, 2023, 28: 101468. doi: 10.1016/j.aqrep.2023.101468
    [17]
    PAN J Y, CHEN L Q, JI Y Z, et al. A crucial role in osmoregulation against hyperosmotic stress: carbohydrate and inositol metabolism in Nile tilapia (Oreochromis niloticus)[J]. Aquac Rep, 2023, 28: 101433. doi: 10.1016/j.aqrep.2022.101433
    [18]
    刘思迅, 周胜杰, 韩明洋, 等. 密度胁迫对卵形鲳鲹鱼苗运输水质、存活率、免疫酶活力和血清指标的影响[J]. 海洋科学, 2019, 43(4): 70-80.
    [19]
    BISWAL A, SRIVASTAVA P P, KRISHNA G, et al. An integrated biomarker approach for explaining the potency of exogenous glucose on transportation induced stress in Labeo rohita fingerlings[J]. Sci Rep-UK, 2021, 11(1): 5713. doi: 10.1038/s41598-021-85311-5
    [20]
    BRANDÃO F R, DUNCAN W P, FARIAS C F S, et al. Essential oils of Lippia sidoides and Mentha piperita as reducers of stress during the transport of Colossoma macropomum[J]. Aquaculture, 2022, 560: 738515. doi: 10.1016/j.aquaculture.2022.738515
    [21]
    JIANG T, SUN J L, GU Y, et al. Hypoxia alters glucose and lipid metabolisms in golden pompano (Trachinotus blochii)[J]. Aquaculture, 2023, 562: 738747. doi: 10.1016/j.aquaculture.2022.738747
    [22]
    李丹丹, 陈丕茂, 朱爱意, 等. 密度胁迫对黑鲷运输存活率及免疫酶活性的影响[J]. 南方农业学报, 2018, 49(7): 1439-1446.
    [23]
    LUO L, ZHAO Z G, ZHANG R, et al. The effects of temperature changes on the isozyme and Hsp70 levels of the Amur sturgeon, Acipenser schrenckii, at two acclimation temperatures[J]. Aquaculture, 2022, 551: 737743. doi: 10.1016/j.aquaculture.2021.737743
    [24]
    KIM J H, KIM S R, KIM S K, et al. Effects of pH changes on blood physiology, antioxidant responses and IgM of juvenile olive flounder, Paralichthys olivaceus[J]. Aquac Rep, 2021, 21: 100790.
    [25]
    ABDEL-LATIF H M R, CHAKLADER M R, SHUKRY M, et al. A multispecies probiotic modulates growth, digestive enzymes, immunity, hepatic antioxidant activity, and disease resistance of Pangasianodon hypophthalmus fingerlings[J]. Aquaculture, 2023, 563: 738948. doi: 10.1016/j.aquaculture.2022.738948
    [26]
    CHATZIDIMITRIOU E, BISACCIA P, CORRÀ F, et al. Copper/Zinc superoxide dismutase from the crocodile icefish Chionodraco hamatus: antioxidant defense at constant sub-zero temperature[J]. Antioxidants, 2020, 9(4): 325. doi: 10.3390/antiox9040325
    [27]
    SHI A Y, MA H, SHI X L, et al. Effects of microbe-derived antioxidants on growth, digestive and aminotransferase activities, and antioxidant capacities in the hepatopancreas of Eriocheir sinensis under ammonia nitrogen stress[J/OL]. Aquac Fish, 2023 [2023-09-10]. https://www.sciencedirect.com/science/article/pii/S2468550X22001927. DOI: 10.1016/j.aaf.2022.12.002.
    [28]
    ZHANG J, DING Z H, DU W G, et al. Carotenoids act on coloration and increase immunity and antioxidant activity in the novel "Yongzhang Golden turtle" strain of Pelodiscus sinensis[J]. Aquaculture, 2023, 563: 738871. doi: 10.1016/j.aquaculture.2022.738871
    [29]
    HOSEINI S M, YOUSEFI M, HOSEINIFAR S H. Cytokines' gene expression, humoral immune and biochemical responses of common carp (Cyprinus carpio, Linnaeus, 1758) to transportation density and recovery in brackish water[J]. Aquaculture, 2019, 504(15): 13-21.
    [30]
    吕伟华, 马波, 尹家胜, 等. 施氏鲟皮肤的组织学观察[J]. 水产学杂志, 2021, 34(1): 7-11.
    [31]
    FÆSTE C K, TARTOR H, MOEN A, et al. Proteomic profiling of salmon skin mucus for the comparison of sampling methods[J]. J Chromatogr B, 2020, 1138: 121965. doi: 10.1016/j.jchromb.2019.121965
    [32]
    SRIDHAR A, GUARDIOLA F A, KRISHNASAMY S R, et al. Comparative assessment of organic solvent extraction on non-specific immune defences of skin mucus from freshwater fish[J]. Aquac Int, 2022, 30(3): 1121-1138. doi: 10.1007/s10499-022-00847-1
    [33]
    WANG M, LI B, WANG J, et al. Skin transcriptome and physiological analyses reveal the metabolic and immune responses of yellow catfish (Pelteobagrus fulvidraco) to acute hypoxia[J]. Aquaculture, 2021, 546(6): 737277.
    [34]
    吉哲慧, 李清, 蒋明, 等. 杂交鲌 (翘嘴鲌♀×黑尾近红鲌♂) 消化系统形态学和组织学特征研究[J]. 淡水渔业, 2023, 53(1): 12-19.
    [35]
    CORNUAULT J K, BYATT G, PAQUET M E, et al. Zebrafish: a big fish in the study of the gut microbiota[J]. Curr Opin Biotech, 2022, 73: 308-313. doi: 10.1016/j.copbio.2021.09.007
    [36]
    WANG W Z, HUANG J S, ZHANG J D, et al. Effects of hypoxia stress on the intestinal microflora of juvenile of cobia (Rachycentron canadum)[J]. Aquaculture, 2021, 536: 736419. doi: 10.1016/j.aquaculture.2021.736419
    [37]
    WANG Q C, YE W, TAO Y F, et al. Transport stress induces oxidative stress and immune response in juvenile largemouth bass (Micropterus salmoides): analysis of oxidative and immunological parameters and the gut microbiome[J]. Antioxidants, 2023, 12(1): 157. doi: 10.3390/antiox12010157
    [38]
    付东勇, 张艺然, 褚鹏, 等. 低温胁迫对暗纹东方鲀肠道氧化应激、细胞凋亡及肠道微生物组成的影响[J]. 水产学报, 2024, 48(1): 019604.

Catalog

    Article views (629) PDF downloads (38) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return