Citation: | CHEN Qiuyu, ZHENG Xiaoting, ZHONG Jinsong, CHEN Zhibing, WANG Ying, LIANG Xueying, DONG Hongbiao, ZHANG Jiasong. Morphological characterization of embryonic development in Rana catesbeiana[J]. South China Fisheries Science, 2023, 19(6): 158-165. DOI: 10.12131/20230015 |
To explore the early embryonic development process of bullfrogs (Rana catesbeiana) and supplement their biological information and imaging data, we obtained the fertilized eggs from artificially bred bullfrogs by natural oviposition to investigate their morphological changes and biological characteristics. The results show that the size of fertilized eggs was (1.41±0.31) mm. At temperature of (24.5±0.4) ℃, the early embryonic development process could be divided into 7 phases and 24 stages. It took 177 h 38 min for the fertilized eggs to reach the operculum closure stage, and the total accumulated temperature was 4 249.71 h·℃. The embryonic development process showed a pattern of a fast speed at the first several stages (From fertilized egg to 64-cell stage) and then a slowdown at the latter stages. When being stimulated by external stimuli, the embryo had an annular contraction response by bending the head and tail. Later, as the embryo hatched until the completion of gill closure, they become tadpoles.
[1] |
王晓清, 肖克宇, 文祝友, 等. 雌雄牛蛙肌肉和皮肤营养成分比较分析[J]. 水利渔业, 2002, 22(1): 19-20.
|
[2] |
HELBING C C, HAMMOND S A, JACKMAN S H, et al. Antimicrobial peptides from Rana [Lithobates] catesbeiana: gene structure and bioinformatic identification of novel forms from tadpoles[J]. Sci Rep, 2019, 9(1): 1529. doi: 10.1038/s41598-018-38442-1
|
[3] |
RUTCKEVISKI R, XAVIER-JUNIOR F H, MORAIS A R, et al. Thermo-oxidative stability evaluation of bullfrog (Rana catesbeiana Shaw) oil[J]. Molecules, 2017, 22(4): 606. doi: 10.3390/molecules22040606
|
[4] |
姚冰冰. “链”通上下游, 牛蛙成小龙虾后又一千亿大单品?[N]. 中国食品报, 2023-04-06.
|
[5] |
高博. 我国牛蛙产业现状及前景分析[D]. 厦门: 集美大学, 2017: 13-14.
|
[6] |
HURNEY C A, BABCOCK S K, SHOOK D R, et al. Normal table of embryonic development in the four-toed salamander, Hemidactylium scutatum[J]. Mech Dev, 2015, 136: 99-110. doi: 10.1016/j.mod.2014.12.007
|
[7] |
山东淡水水产所牛蛙试验组. 牛蛙发育时期的划分[J]. 动物学杂志, 1966(3): 137-141.
|
[8] |
刘楚吾, 陈信初. 环境因素对牛蛙胚胎发育的影响[J]. 湖南师范大学自然科学学报, 1987(2): 60-64.
|
[9] |
王雪虹. 温度和机械刺激对牛蛙胚胎发育的影响[J]. 集美大学学报(自然科学版), 1997(2): 62-65.
|
[10] |
刘韬, 庄志鸿, 杨声强. 基于生物技术调控棘胸蛙繁殖与养殖的研究[J]. 中国农学通报, 2009, 25(7): 26-29.
|
[11] |
谢永广, 汪小冬, 吴亚峰, 等. 棘胸蛙胚胎发育观察与相关抗氧化酶活性变化研究[J/OL].水产科学:1-13[2023-09-06]. DOI: 10.16378/j.cnki.1003-1111.21209.
|
[12] |
邢君霞, 杨茂源, 陈朋, 等. 北极茴鱼胚胎及仔鱼发育[J]. 水生生物学报, 2023, 47(4): 648-656.
|
[13] |
李霞. 水产动物组织胚胎学[M]. 北京: 中国农业出版社, 2006: 229-241.
|
[14] |
SHUMWAY W. Stages in the normal development of Rana pipiens I. External form[J]. Anat Rec, 1940, 78(2): 139-147. doi: 10.1002/ar.1090780202
|
[15] |
于业辉, 张守纯, 刘超. 沈阳地区黑斑蛙早期胚胎发育研究[J]. 四川动物, 2013, 32(4): 535-539.
|
[16] |
郭琳. 河南南召花臭蛙的繁殖生态和早期胚胎发育研究[D]. 新乡: 河南师范大学, 2012: 29-36.
|
[17] |
XIONG R C, JIANG J P, FEI L. Embryonic development of the concave-eared torrent frog with its significance on taxonomy[J]. Zool Res, 2010, 31(5): 490-498.
|
[18] |
徐大德, 李军, 李方满. 斑腿泛树蛙早期胚胎发育的研究[J]. 四川动物, 2007(3): 647-651.
|
[19] |
LEE S, MIETCHEN D, CHO J, et al. In vivo magnetic resonance microscopy of differentiation in Xenopus laevis embryos from the first cleavage onwards[J]. Differentiation, 2007, 75(1): 84-92. doi: 10.1111/j.1432-0436.2006.00114.x
|
[20] |
MERZDORF C S, CHEN Y H, GOODENOUGH D A. Formation of functional tight junctions in Xenopus embryos[J]. Dev Biol, 1998, 195(2): 187-203. doi: 10.1006/dbio.1997.8846
|
[21] |
SEMENZA G L. Oxygen sensing, homeostasis, and disease[J]. N Engl J Med, 2011, 365(6): 537-547. doi: 10.1056/NEJMra1011165
|
[22] |
SAKA Y, SMITH J C. Spatial and temporal patterns of cell division during early Xenopus embryogenesis[J]. Dev Biol, 2001, 229(2): 307-318. doi: 10.1006/dbio.2000.0101
|
[23] |
POLLISTER A W, MOORE J A. Tables for the normal development of Rana sylvatica[J]. Anat Rec, 1937, 68(4): 489-496.
|
[24] |
刘绍龙, 宋志明, 张家藻, 等. 饰纹姬蛙早期胚胎发育的研究[J]. 四川大学学报自然科学版, 1996(3): 323-329.
|
[25] |
EGEL R. Life's order, complexity, organization, and its thermodynamic-holistic imperatives[J]. Life, 2012, 2(4): 323-363. doi: 10.3390/life2040323
|
[26] |
PUVANENDRAN V, FALK PETERSEN I B, LYSNE H, et al. Effects of different step-wise temperature increment regimes during egg incubation of A tlantic cod (Gadus morhua.) on egg viability and newly hatched larval quality[J]. Aquac Res, 2015, 46(1): 226-235. doi: 10.1111/are.12173
|
[27] |
LAHNSTEINER F, KLETZL M, WEISMANN T. The effect of temperature on embryonic and yolk-sac larval development in the burbot Lota lota[J]. J Fish Biol, 2012, 81(3): 977-986. doi: 10.1111/j.1095-8649.2012.03344.x
|
[28] |
王寿兵, 张思路, 屈云芳, 等. 辽宁产中国林蛙早期胚胎发育研究[J]. 复旦学报(自然科学版), 1996(2): 163-169.
|
[29] |
JOHANSSON F, LEDERER B, LIND M I. Trait performance correlations across life stages under environmental stress conditions in the common frog, Rana temporaria[J]. PLoS One, 2010, 5(7): e11680. doi: 10.1371/journal.pone.0011680
|
[30] |
GAHM K, ARIETTA A A, SKELLY D K. Temperature-mediated trade-off between development and performance in larval wood frogs (Rana sylvatica)[J]. J Exp Zool A: Ecol Integr Physiol, 2021, 335(1): 146-157. doi: 10.1002/jez.2434
|
[31] |
陈雯, 俞宝根, 郑荣泉, 等. 温度对棘胸蛙胚胎发育及蝌蚪表型特征的影响[J]. 贵州农业科学, 2010, 38(1): 108-110. doi: 10.3969/j.issn.1001-3601.2010.01.033
|
[32] |
刘永鑫, 张殿福, 陶忠虎, 等. 温度对克氏原螯虾胚胎和幼体发育的影响[J]. 华中农业大学学报, 2021, 40(5): 146-153.
|
[33] |
彭安权, 李新殿, 李慧萍, 等. 东北林蛙 (Rana dybowskii) 蝌蚪生长发育理想光照强度的研究[J]. 经济动物学报, 2015, 19(2): 80-85.
|
[34] |
BERVEN K A, CHADRA B G. The relationship among egg size, density and food level on larval development in the wood frog (Rana sylvatica)[J]. Oecologia, 1988, 75: 67-72. doi: 10.1007/BF00378815
|
[35] |
ALBECKER M A, MCCOY M W. Local adaptation for enhanced salt tolerance reduces non-adaptive plasticity caused by osmotic stress[J]. Evolution, 2019, 73(9): 1941-1957. doi: 10.1111/evo.13798
|
[36] |
LI Y, COHEN J M, ROHR J R. Review and synthesis of the effects of climate change on amphibians[J]. Integr Zool, 2013, 8(2): 145-161. doi: 10.1111/1749-4877.12001
|
[37] |
WANG S H, ZHAO L Y, LIU L S, et al. A complete embryonic developmental table of Microhyla fissipes (Amphibia, Anura, Microhylidae)[J]. Asian Herpetol Res, 2017, 8(2): 108-117.
|
[38] |
殷名称. 鱼类早期生活史研究与其进展[J]. 四川学报, 1991(4): 348-358.
|
[39] |
AMIN N M, WOMBLE M, LEDON-RETTIG C, et al. Budgett's frog (Lepidobatrachus laevis): a new amphibian embryo for developmental biology[J]. Dev Biol, 2015, 405(2): 291-303. doi: 10.1016/j.ydbio.2015.06.007
|
[40] |
VICKARYOUS N, WHITELAW E. The role of early embryonic environment on epigenotype and phenotype[J]. Reprod Fertil Dev, 2005, 17(3): 335-340. doi: 10.1071/RD04133
|
[41] |
王国恩. 鱼类早期胚胎发生及环境影响[J]. 东北师大学报(自然科学版), 1988(3): 115-131.
|
[42] |
DMITRIEVA E V. Influence of the concentration of dissolved oxygen on embryonic development of the common toad (Bufo bufo)[J]. Ontogenez, 2015, 46(6): 416-429.
|
[43] |
王春青, 吕树臣. 中国林蛙蝌蚪气泡病的诊断与防治[J]. 中国兽医杂志, 2001(2): 40. doi: 10.3969/j.issn.0529-6005.2001.02.028
|
[44] |
FROMMEL A Y, STIEBENS V, CLEMMESEN C, et al. Effect of ocean acidification on marine fish sperm (Baltic cod: Gadus morhua)[J]. Biogeosciences, 2010, 7(12): 3915-3919. doi: 10.5194/bg-7-3915-2010
|
[45] |
刘洋, 于瑞海, 张哲, 等. 不同pH对海湾扇贝胚胎发育及幼虫生长发育的影响[J]. 渔业科学进展, 2020, 41(6): 108-114. doi: 10.19663/j.issn2095-9869.20190921001
|
[46] |
孙艳秋, 刘鉴毅, 庄平, 等. 温度、盐度和pH对多纹钱蝶鱼胚胎发育的影响[J]. 南方水产科学, 2021, 17(6): 122-129. doi: 10.12131/20210109
|
[47] |
宋振鑫, 陈超, 吴雷明, 等. 盐度与pH对云纹石斑鱼胚胎发育和仔鱼活力的影响[J]. 渔业科学进展, 2013, 34(6): 52-58. doi: 10.3969/j.issn.1000-7075.2013.06.008
|
[48] |
XIE Y F, WANG F F, ZHONG W J, et al. Shear stress induces preimplantation embryo death that is delayed by the zona pellucida and associated with stress-activated protein kinase-mediated apoptosis[J]. Biol Reprod, 2006, 75(1): 45-55. doi: 10.1095/biolreprod.105.049791
|
[49] |
DONG X X, LIU Q G, KAN D Q, et al. Effects of ammonia-N exposure on the growth, metabolizing enzymes, and metabolome of Macrobrachium rosenbergii[J]. Ecotoxicol Environ Saf, 2020, 189: 110046. doi: 10.1016/j.ecoenv.2019.110046
|
[50] |
任昕. 七彩鲑受精卵感染水霉的预防与治疗[J]. 河北渔业, 2017(9): 42-43. doi: 10.3969/j.issn.1004-6755.2017.09.015
|
[51] |
张元. 虹鳟卵孵化中水霉病的防控[J]. 水产学杂志, 2017, 30(1): 6-10. doi: 10.3969/j.issn.1005-3832.2017.01.002
|
[52] |
FORGIONE M E, BRADY S P. Road salt is more toxic to wood frog embryos from polluted ponds[J]. Environ Pollut, 2022, 296: 118757. doi: 10.1016/j.envpol.2021.118757
|
[53] |
LOMBARD-BANEK C, MOODY S A, NEMES P. High-sensitivity mass spectrometry for probing gene translation in single embryonic cells in the early frog (Xenopus) embryo[J]. Front Cell Dev Biol, 2016, 4: 100.
|
[54] |
ROW J R, DONALDSON M E, LONGHI J N, et al. Tissue-specific transcriptome characterization for developing tadpoles of the northern leopard frog (Lithobates pipiens)[J]. Genomics, 2016, 108(5/6): 232-240.
|
[55] |
BECK C W. Studying regeneration in Xenopus[J]. Methods Mol Biol, 2012, 917: 525-539.
|
[56] |
PATEL J H, SCHATTINGER P A, TAKAYOSHI E E, et al. Hif1α and Wnt are required for posterior gene expression during Xenopus tropicalis tail regeneration[J]. Dev Biol, 2022, 483: 157-168. doi: 10.1016/j.ydbio.2022.01.007
|
[57] |
HAMILTON A M, BALASHOVA O A, BORODINSKY L N. Non-canonical Hedgehog signaling regulates spinal cord and muscle regeneration in Xenopus laevis larvae[J]. Elife, 2021, 10: e61804. doi: 10.7554/eLife.61804
|
[58] |
KHA C X, SON P H, LAUPER J, et al. A model for investigating developmental eye repair in Xenopus laevis[J]. Exp Eye Res, 2018, 169: 38-47. doi: 10.1016/j.exer.2018.01.007
|
[1] | WU Qingqing, HUANG Hui, HAO Shuxian, CEN Jianwei, WEI Ya, XIANG Huan, HU Xiao, ZHAO Yongqiang. Effect of hanging pulp on quality improvement and protein stability of prepared tilapia fillets[J]. South China Fisheries Science, 2024, 20(4): 11-23. DOI: 10.12131/20240100 |
[2] | LENG Meng, LIN Duanquan, WENG Ling, ZHANG Lingjing, MIAO Song, CAO Minjie, SUN Lechang. Enzymatic extraction and physicochemical properties of Porphyra haitanensis protein[J]. South China Fisheries Science, 2023, 19(3): 140-150. DOI: 10.12131/20220242 |
[3] | GE Mengmeng, SHEN Jiandong, TANG Xiaohang, XIA Wenshui, XU Yanshun. Optimization of thermal sterilization process for low-acid and acidified instant laver[J]. South China Fisheries Science, 2022, 18(6): 127-136. DOI: 10.12131/20220003 |
[4] | PEI Ruonan, ZHAI Honglei, QI Bo, YANG Xianqing. Optimization of multi-enzymatic extraction of polysaccharide from Gelidium amansii by response surface methodology[J]. South China Fisheries Science, 2019, 15(6): 88-95. DOI: 10.12131/20190081 |
[5] | ZHANG Tao, WU Yanyan, LI Laihao, YANG Xianqing, LIN Wanling, YANG Shaoling, HAO Shuxian. Optimization of ratio of refrigerants for quick liquid freezing of aquatic product by response surface methodology[J]. South China Fisheries Science, 2019, 15(5): 99-108. DOI: 10.12131/20190038 |
[6] | WANG Xiaohui, QI Bo, YANG Xianqing, YANG Shaoling, MA Haixia, DENG Jianchao. Optimization of enzymatic hydrolysis of protein in abandoned Porphyra haitanensis by response surface methodology and study on antioxidant activity of its hydrolysate[J]. South China Fisheries Science, 2019, 15(2): 93-101. DOI: 10.12131/20180099 |
[7] | LI Shasha, CAO Yucheng, HU Xiaojuan, LI Zhuojia, XU Yu, YANG Keng, XU Chuangwen, WEN Guoliang. Optimization for cultivation parameters of Bacillus sp. A4 using response surface methodology[J]. South China Fisheries Science, 2017, 13(5): 85-93. DOI: 10.3969/j.issn.2095-0780.2017.05.012 |
[8] | CHEN Kang, DAI Zhiyuan, SHEN Qing, HUANG Yaowen. Extraction of phospholipid from Euphausia superba by response surface method and determination of phospholipid molecular species[J]. South China Fisheries Science, 2017, 13(3): 104-112. DOI: 10.3969/j.issn.2095-0780.2017.03.014 |
[9] | SUN Jiying, WU Yanyan, YANG Xianqing, MA Haixia, DENG Jianchao, HU Xiao, ZHOU Wanjun. Sterilization and quality effects of ozone water on cobia fillets[J]. South China Fisheries Science, 2013, 9(6): 66-71. DOI: 10.3969/j.issn.2095-0780.2013.06.011 |
[10] | SHI Hong, HAO Shuxian, YANG Xianqing, LI Laihao, CEN Jianwei, DIAO Shiqiang. Sterilization application of the food grade hydrogen peroxide in shrimp muscle polluted bacteria[J]. South China Fisheries Science, 2006, 2(3): 46-49. |
1. |
杜金辉,章海鑫,张燕萍,陈文静,李完波,徐先栋. 大口黑鲈体表溃疡病原菌的分离鉴定及药物敏感性分析. 中国畜牧兽医. 2025(02): 890-900 .
![]() | |
2. |
李硕,陈静妮,赵立宁,黄春萍,黄锦炉,王贵平,仲颖. 抗大口黑鲈蛙虹彩病毒卵黄抗体的制备及其间接ELISA检测方法的建立. 南方水产科学. 2024(02): 129-139 .
![]() | |
3. |
马兴右,朱志,罗雪莲,张孟琴,印双红,张俊波. 黄精多糖对维氏气单胞菌抑制效果研究. 水产养殖. 2024(06): 30-36 .
![]() | |
4. |
吴伟军,谭红连,韩耀全,杨明伟,邓冬明,陈静,韦信贤,童桂香. 乌原鲤源致病性维氏气单胞菌分离鉴定及其毒力基因分析. 南方农业学报. 2024(05): 1520-1529 .
![]() | |
5. |
王海华,付辉云,王帅兵,马本贺,熊良伟,李涵,王梦杰,李燕华. 蚂蟥水肿病病原的分离鉴定与药敏分析. 中国动物传染病学报. 2024(06): 36-41 .
![]() | |
6. |
朱雪晴,赵飞,邓玉婷,谭爱萍,赖迎迢,巩华,黄志斌,荆鹏华. 大口黑鲈MsIL-21基因的克隆、表达及其对细菌感染的应答特征. 农业生物技术学报. 2023(01): 124-135 .
![]() | |
7. |
陈安婷,张紫瑞,姜群,张晓君,王春波,高晓建. 中草药抑制及杀灭水产病原维氏气单胞菌效果研究. 水产养殖. 2023(04): 4-9 .
![]() | |
8. |
彭鑫,屠海慧,罗金萍,钟镇霄,蓝璇,唐琼英,易少奎,夏正龙,蔡缪荧,杨国梁. 罗氏沼虾源维氏气单胞菌的分离鉴定、毒力基因检测及组织病理学观察. 水生生物学报. 2023(06): 883-894 .
![]() | |
9. |
李媛媛,蔡琰,张连英,孙金辉,包海岩,徐晓丽. 大口黑鲈源鳗弧菌的分离鉴定. 淡水渔业. 2023(03): 46-53 .
![]() | |
10. |
彭小倩,任朝颖,邓雪玥,刘晓云,詹泽玉,张雪扬,郑永华,朱成科. 杂交鲟源温和气单胞菌的分离鉴定及生物学特性的研究. 淡水渔业. 2023(03): 62-70 .
![]() | |
11. |
刘文文,邓玉婷,朱雪晴,赵飞,谭爱萍,王芳,张美超,黄志斌. 鰤诺卡氏菌对大口黑鲈头肾巨噬细胞的侵染过程. 微生物学通报. 2023(06): 2602-2623 .
![]() | |
12. |
张晶晶. 半刺厚唇鱼源维氏气单胞菌的分离鉴定. 中国农学通报. 2023(20): 138-146 .
![]() | |
13. |
汤环宇,翟伟,朱鑫海,周一凡,唐建清,张晓君. 3株水产病原维氏气单胞菌对常用抗菌药物耐药性比较分析. 水产养殖. 2022(02): 19-23 .
![]() | |
14. |
谭爱萍,赵飞,郭忠宝,邓玉婷,张瑞泉,赖迎迢,黄志斌,姜兰. 大口黑鲈白皮病病原菌的分离鉴定及药物敏感性试验. 微生物学通报. 2022(05): 1741-1758 .
![]() | |
15. |
张桓桥,商宝娣,张效平,周贤君,赵凤,李小义,孔杰,杨星,陶莎. 31种中草药及其复方对维氏气单胞菌体外抑菌研究. 淡水渔业. 2022(03): 74-81 .
![]() | |
16. |
雷宁,郝贵杰,黄爱霞,王雨辰,林锋,沈小明,朱俊杰. 大口黑鲈(Micropterus salmoides)致病性维氏气单胞菌的分离鉴定及其特性分析. 海洋与湖沼. 2022(05): 1180-1188 .
![]() | |
17. |
王茜,邓益琴,孙承文,林梓阳,苏雯晓,刘梦瑶,程长洪,郭志勋,冯娟. 维氏气单胞菌重要致病因子基因对环境条件的响应. 南方水产科学. 2022(05): 74-80 .
![]() | |
18. |
张桓桥,商宝娣,赵凤,周贤君,张效平,李小义,孔杰,杨星,陶莎. 昆明裂腹鱼溃疡病病原菌分离鉴定及药物敏感性. 淡水渔业. 2021(06): 54-62 .
![]() |