SONG Yuqiong, HU Xiao, XIANG Huan, CHEN Shengjun, LI Laihao, YANG Xianqing, WU Yanyan, MA Haixia. Study on tyrosinase inhibitory activity and Cu2+ binding activity of tilapia skin peptides[J]. South China Fisheries Science, 2023, 19(1): 155-164. DOI: 10.12131/20220097
Citation: SONG Yuqiong, HU Xiao, XIANG Huan, CHEN Shengjun, LI Laihao, YANG Xianqing, WU Yanyan, MA Haixia. Study on tyrosinase inhibitory activity and Cu2+ binding activity of tilapia skin peptides[J]. South China Fisheries Science, 2023, 19(1): 155-164. DOI: 10.12131/20220097

Study on tyrosinase inhibitory activity and Cu2+ binding activity of tilapia skin peptides

More Information
  • Received Date: April 06, 2022
  • Revised Date: June 05, 2022
  • Accepted Date: July 18, 2022
  • Available Online: July 25, 2022
  • To find out whether the tilapia (Oreochromis) skin collagen peptides can effectively inhibit melanin production, we used enzymatic method to prepare the tilapia skin tyrosinase (TYR) inhibitory peptides (TSTIP) and studied the relevance between TYR inhibitory activity and Cu2+ binding activity. The results show that the product of tilapia skin hydrolyzed by alcalase for 4 h exhibited both the highest TYR inhibitory activity and Cu2+ binding activity, which were significantly positively correlated (R=0.856). When TSTIP was bound to Cu2+ or tyrosinase, the intrinsic fluorescence absorption had a consistent decreasing trend, but the UV absorption increased and the maximum absorption wavelength had a red shift. For FTIR results, TYR and Cu2+ bound to TSTIP mainly by carbonyl and amino groups. Circular dichroism shows that the β-turn and random curl contents of the two conjugates decreased relatively, while the β-fold content increased relatively, which was more obvious for TSTIP-Cu2+ conjugate. In conclusion, the structural change of TSTIP-TYR is similar with that of TSTIP-Cu2+ conjugate, which indicates that TSTIP can inhibit TYR's activity by binding to its Cu2+ active site.
  • [1]
    胡俊康. 罗非鱼养殖现状与健康管理——访中国水产科学研究院珠江水产研究所王广军研究员[J]. 广东饲料, 2021, 30(3): 8-10.
    [2]
    李敏雄. 罗非鱼皮胶原蛋白肽的制备及活性研究[D]. 广州: 华南农业大学, 2018: 1-2.
    [3]
    农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2021中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2021: 78.
    [4]
    陈胜军, 李来好, 杨贤庆, 等. 罗非鱼综合加工利用与质量安全控制技术研究进展[J]. 南方水产科学, 2011, 7(4): 85-90. doi: 10.3969/j.issn.2095-0780.2011.04.013
    [5]
    梁小明, 韦倩妮, 吴军, 等. 罗非鱼加工废弃物的综合利用探讨[J]. 现代食品, 2020(17): 29-31. doi: 10.16736/j.cnki.cn41-1434/ts.2020.17.010
    [6]
    ZHANG X G, NOISA P, YONGSAWATDIGUL J. Identification and characterization of tilapia antioxidant peptides that protect AAPH-induced HepG2 cell oxidative stress[J]. J Funct Foods, 2021, 86: 104662. doi: 10.1016/j.jff.2021.104662
    [7]
    CHEN J D, SUN S S, LI Y S, et al. Proteolysis of tilapia skin collagen: identification and release behavior of ACE-inhibitory peptides[J]. Food Sci Technol, 2021, 139: 110502.
    [8]
    JIN L, ZHENG D X, YANG G Y, et al. Tilapia skin peptides ameliorate diabetic nephropathy in stz-induced diabetic rats and HG-induced GMCs by improving mitochondrial dysfunction[J]. Mar Drugs, 2020, 18(7): 363-378. doi: 10.3390/md18070363
    [9]
    王堡煊. 灰星鲨鱼皮肽的提取及生物活性的研究[D]. 厦门: 厦门大学, 2019: 12-60.
    [10]
    李娜. 玉米源单体肽TPM对酪氨酸酶活性的影响[D]. 长春: 吉林大学, 2018: 1-25.
    [11]
    TENG H, FAN X Y, LV Q Y, et al. Folium nelumbinis (lotus leaf) volatile-rich fraction and its mechanisms of action against melanogenesis in B16 cells[J]. Food Chem, 2020, 330(15): 127030.
    [12]
    PENG Z Y, WANG G C, ZENG Q H, et al. Synthesis, antioxidant and anti-tyrosinase activity of 1, 2, 4-triazole hydrazones as antibrowning agents[J]. Food Chem, 2021, 341(2): 128265.
    [13]
    KUBGLOMSONG S, THEERAKULKAIT C, REED R L, et al. Isolation and identification of tyrosinase-inhibitory and copper-chelating peptides from hydrolyzed rice-bran-derived albumin[J]. J Agric Food Chem, 2018, 66(31): 8346-8354. doi: 10.1021/acs.jafc.8b01849
    [14]
    ISABELLA T, MARCO B, FRANCESCO V, et al. The reaction of alpha-synuclein with tyrosinase: possible implications for Parkinson disease[J]. J Biol chem, 2008, 283(24): 16808-16817. doi: 10.1074/jbc.M709014200
    [15]
    SAMANEH Z, ASIEH B, MAHMUD T H K, et al. A comprehensive review on tyrosinase inhibitors[J]. J Enzym Inhib Med Chem, 2019, 34(1): 279-309. doi: 10.1080/14756366.2018.1545767
    [16]
    JOOMPANG A, JANGPROMMA N, CHOOWONGKOMON K, et al. Evaluation of tyrosinase inhibitory activity and mechanism of Leucrocin I and its modified peptides[J]. J Biosci Bioeng, 2020, 130(3): 239-246. doi: 10.1016/j.jbiosc.2020.04.002
    [17]
    AGUILAR-TOAL'A J E, HERNΆNDEZ-MENDOZA A, GONZ'ALEZ-CΌRDOVA A F, et al. Potential role of natural bioactive peptides for development of cosmeceutical skin products[J]. Peptides, 2019, 122: 170170. doi: 10.1016/j.peptides.2019.170170
    [18]
    CARRASCO-CASTILLA J, HERNÁNDEZ-ÁLVAREZ A J, JIMĔNEZ-MARTĹNEZIMÉNEZ C, et al. Antioxidant and metal chelating activities of peptide fractions from phaseolin and bean protein hydrolysates[J]. Food Chem, 2012, 135(3): 1789-1795. doi: 10.1016/j.foodchem.2012.06.016
    [19]
    林善婷, 胡晓, 李来好, 等. 罗非鱼皮蛋白肽-Fe2+结合物的制备及性质分析[J]. 食品科学, 2021, 42(8): 157-164. doi: 10.7506/spkx1002-6630-20200307-117
    [20]
    GUO L D, HARNEDY P A, O'KEEFFE M B, et al. Fractionation and identification of Alaska pollock skin collagen-derived mineral chelating peptides[J]. Food Chem, 2015, 173(15): 536-542.
    [21]
    YU Q, LI J W, FAN L P. Effect of drying methods on the microstructure, bioactivity substances, and antityrosinase activity of asparagus stems[J]. J Agric Food Chem, 2019, 67(5): 1537-1545. doi: 10.1021/acs.jafc.8b05993
    [22]
    张金杨. 罗非鱼促钙吸收肽的制备分离及生物活性研究[D]. 上海: 上海海洋大学, 2018: 13-14.
    [23]
    WU W M, HE L C, LIANG Y H, et al. Preparation process optimization of pig bone collagen peptide-calcium chelate using response surface methodology and its structural characterization and stability analysis[J]. Food Chem, 2019, 284(30): 80-89.
    [24]
    SHEN Z W, WANG Y J, GUO Z, et al. Novel tyrosinase inhibitory peptide with free radical scavenging ability[J]. J Enzym Inhib Med Chem, 2019, 34(1): 1633-1640. doi: 10.1080/14756366.2019.1661401
    [25]
    CHEN M J, LIU J R, SHEU J F, et al. Study on skin care properties of milk kefir whey[J]. Asian-Australas J Anim Sci, 2006, 19(6): 905-908. doi: 10.5713/ajas.2006.905
    [26]
    DENG Y J, HUANG L X, ZHANG C H, et al. Skin-care functions of peptides prepared from Chinese quince seed protein: sequences analysis, tyrosinase inhibition and molecular docking study[J]. Ind Crops Prod, 2020, 148: 112331. doi: 10.1016/j.indcrop.2020.112331
    [27]
    XIE N, HUANG J, LI B, et al. Affinity purification and characterisation of zinc chelating peptides from rapeseed protein hydrolysates: possible contribution of characteristic amino acid residues[J]. Food Chem, 2015, 173(15): 210-217.
    [28]
    冯兰. 黑色素生成抑制肽的设计、筛选及作用机制探究[D]. 大连: 大连理工大学, 2018: 15-22.
    [29]
    NIE H L, LIU L, YANG H Q, et al. A novel heptapeptide with tyrosinase inhibitory activity identified from a phage display library[J]. Appl Biochem Biotechnol, 2017, 181(1): 219-232. doi: 10.1007/s12010-016-2208-3
    [30]
    TORRES-FUENTES C, ALAIZ M, VIOQUE J. Chickpea chelating peptides inhibit copper-mediated lipid peroxidation[J]. J Sci Food Agric, 2014, 94(15): 3181-3188. doi: 10.1002/jsfa.6668
    [31]
    MEGĺAS C, PEDROCHE J, YUST M, et al. Affinity purification of copper chelating peptides from chickpea protein hydrolysates[J]. J Agric Food Chem, 2007, 55(10): 3949-3954. doi: 10.1021/jf063401s
    [32]
    DAS D, MITRA S, KUMAR R, et al. Copper-induced spectroscopic and structural changes in short peptides derived from azurin[J]. Arch Biochem Biophys, 2020, 687(15): 108388.
    [33]
    SCHURINK M, van BERKEL W J H, WICHERS H J, et al. Novel peptides with tyrosinase inhibitory activity[J]. Peptides, 2007, 28(3): 485-495. doi: 10.1016/j.peptides.2006.11.023
    [34]
    ARICHAYA M, PORNLERT A, SUWIMON K. Chicken foot broth byproduct: a new source for highly effective peptide-calcium chelate[J]. Food Chem, 2021, 345(30): 128713.
    [35]
    MA Q F, HU J, WU W H, et al. Characterization of copper binding to the peptide amyloid-β (1-16) associated with Alzheimer's disease[J]. Biopolymers, 2006, 83(1): 20-31. doi: 10.1002/bip.20523
    [36]
    OOKUBO N, MICHIUE H, KITAMATSU M, et al. The transdermal inhibition of melanogenesis by a cell-membrane-permeable peptide delivery system based on poly-arginine[J]. Biomaterials, 2014, 35(15): 4508-4516. doi: 10.1016/j.biomaterials.2014.01.052
  • Related Articles

    [1]LI Wenheng, WANG Haitao, SHAN Hongwei, GAO Chang, LI Jiqing. Effects of dietary supplementation with powder of Antarctic krill (Euphausia superba) on growth performance, body composition and color of Litopenaeus vannamei[J]. South China Fisheries Science, 2023, 19(1): 97-105. DOI: 10.12131/20220074
    [2]GUO Huayang, LIU Mingjian, GAO Jie, ZHU Kecheng, LIU Baosuo, GUO Liang, ZHANG Nan, SUN Jinhui, ZENG Chen, YANG Jingwen, LIU Bo, ZHANG Dianchang. Development of vertebral column and appendicular skeleton in larvae and juveniles of Platax teira[J]. South China Fisheries Science, 2022, 18(6): 93-99. DOI: 10.12131/20220058
    [3]LIU Mingjian, GUO Huayang, GAO Jie, ZHU Kecheng, LIU Baosuo, GUO Liang, ZHANG Nan, YANG Jingwen, LIU Bo, ZHANG Dianchang. Embryonic development and morphological characteristics of larvae and juvenile of Platax teira[J]. South China Fisheries Science, 2022, 18(4): 103-111. DOI: 10.12131/20210251
    [4]LIAO Xiurui, YANG Jinling, WEI Miao, LI Jiaoni, PAN Zhi, SHI Yaohua, VASQUEZ Herbert Ely, LIU Chunsheng, GU Zhifeng, ZHENG Xing. Effects of aquaculture water color on survival, growth and body color of Cherax quadricarinatus juveniles[J]. South China Fisheries Science, 2022, 18(1): 77-83. DOI: 10.12131/20210128
    [5]Lihao TONG, Xiangyu WU, Liangfu HUANG, Jun ZENG, Yaohua SHI, Xianming TANG. Correlation analysis of light intensity and growth, photosynthetic pigment, color value of Betaphycus gelatinae[J]. South China Fisheries Science, 2021, 17(5): 79-85. DOI: 10.12131/20200256
    [6]ZHENG Xing, LIN Siqi, YANG Shouguo, ZHANG Xingzhi, VASQUEZ Herbert Ely, GU Zhifeng, WANG Aimin. Change and correlation analysis of pigment contents and color value during growth of Chlorella vulgaris[J]. South China Fisheries Science, 2021, 17(1): 32-38. DOI: 10.12131/20200076
    [7]ZHAO Min, LI Laihao, YANG Xianqing, HUANG Hui, WEI Ya, CEN Jianwei, LIN Zhi. Study on non-CO color retention method of tilapia fillets[J]. South China Fisheries Science, 2019, 15(4): 107-112. DOI: 10.12131/20180227
    [8]SUN Zhijing, JIANG Jufeng, FU Zhiru, WU Huimin, LIU Xiaolian, XIA Sudong, ZHANG Zhenguo, HAO Shuang, FENG Shouming. Observation of embryonic and larval development of blood parrot cichlid fish Cichlasoma synspilum×C.citrinellum[J]. South China Fisheries Science, 2014, 10(3): 38-46. DOI: 10.3969/j.issn.2095-0780.2014.03.006
    [9]OU Yanyan, LIU Zhigang, LIU Jinshang. Study on body-color polymorphism of Chlamys nobilis in Liusha Bay[J]. South China Fisheries Science, 2012, 8(5): 15-24. DOI: 10.3969/j.issn.2095-0780.2012.05.003
    [10]ZHANG Yuehuan, YAN Xiwu, YAO Tuo, HUO Zhongming, YANG Feng, ZHANG Guofan. Study on population hybridization of two shell color strains of Manila clam Ruditapes philippinarum[J]. South China Fisheries Science, 2008, 4(3): 27-32.

Catalog

    Article views (693) PDF downloads (42) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return