Citation: | SONG Yuqiong, HU Xiao, XIANG Huan, CHEN Shengjun, LI Laihao, YANG Xianqing, WU Yanyan, MA Haixia. Study on tyrosinase inhibitory activity and Cu2+ binding activity of tilapia skin peptides[J]. South China Fisheries Science, 2023, 19(1): 155-164. DOI: 10.12131/20220097 |
[1] |
胡俊康. 罗非鱼养殖现状与健康管理——访中国水产科学研究院珠江水产研究所王广军研究员[J]. 广东饲料, 2021, 30(3): 8-10.
|
[2] |
李敏雄. 罗非鱼皮胶原蛋白肽的制备及活性研究[D]. 广州: 华南农业大学, 2018: 1-2.
|
[3] |
农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2021中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2021: 78.
|
[4] |
陈胜军, 李来好, 杨贤庆, 等. 罗非鱼综合加工利用与质量安全控制技术研究进展[J]. 南方水产科学, 2011, 7(4): 85-90. doi: 10.3969/j.issn.2095-0780.2011.04.013
|
[5] |
梁小明, 韦倩妮, 吴军, 等. 罗非鱼加工废弃物的综合利用探讨[J]. 现代食品, 2020(17): 29-31. doi: 10.16736/j.cnki.cn41-1434/ts.2020.17.010
|
[6] |
ZHANG X G, NOISA P, YONGSAWATDIGUL J. Identification and characterization of tilapia antioxidant peptides that protect AAPH-induced HepG2 cell oxidative stress[J]. J Funct Foods, 2021, 86: 104662. doi: 10.1016/j.jff.2021.104662
|
[7] |
CHEN J D, SUN S S, LI Y S, et al. Proteolysis of tilapia skin collagen: identification and release behavior of ACE-inhibitory peptides[J]. Food Sci Technol, 2021, 139: 110502.
|
[8] |
JIN L, ZHENG D X, YANG G Y, et al. Tilapia skin peptides ameliorate diabetic nephropathy in stz-induced diabetic rats and HG-induced GMCs by improving mitochondrial dysfunction[J]. Mar Drugs, 2020, 18(7): 363-378. doi: 10.3390/md18070363
|
[9] |
王堡煊. 灰星鲨鱼皮肽的提取及生物活性的研究[D]. 厦门: 厦门大学, 2019: 12-60.
|
[10] |
李娜. 玉米源单体肽TPM对酪氨酸酶活性的影响[D]. 长春: 吉林大学, 2018: 1-25.
|
[11] |
TENG H, FAN X Y, LV Q Y, et al. Folium nelumbinis (lotus leaf) volatile-rich fraction and its mechanisms of action against melanogenesis in B16 cells[J]. Food Chem, 2020, 330(15): 127030.
|
[12] |
PENG Z Y, WANG G C, ZENG Q H, et al. Synthesis, antioxidant and anti-tyrosinase activity of 1, 2, 4-triazole hydrazones as antibrowning agents[J]. Food Chem, 2021, 341(2): 128265.
|
[13] |
KUBGLOMSONG S, THEERAKULKAIT C, REED R L, et al. Isolation and identification of tyrosinase-inhibitory and copper-chelating peptides from hydrolyzed rice-bran-derived albumin[J]. J Agric Food Chem, 2018, 66(31): 8346-8354. doi: 10.1021/acs.jafc.8b01849
|
[14] |
ISABELLA T, MARCO B, FRANCESCO V, et al. The reaction of alpha-synuclein with tyrosinase: possible implications for Parkinson disease[J]. J Biol chem, 2008, 283(24): 16808-16817. doi: 10.1074/jbc.M709014200
|
[15] |
SAMANEH Z, ASIEH B, MAHMUD T H K, et al. A comprehensive review on tyrosinase inhibitors[J]. J Enzym Inhib Med Chem, 2019, 34(1): 279-309. doi: 10.1080/14756366.2018.1545767
|
[16] |
JOOMPANG A, JANGPROMMA N, CHOOWONGKOMON K, et al. Evaluation of tyrosinase inhibitory activity and mechanism of Leucrocin I and its modified peptides[J]. J Biosci Bioeng, 2020, 130(3): 239-246. doi: 10.1016/j.jbiosc.2020.04.002
|
[17] |
AGUILAR-TOAL'A J E, HERNΆNDEZ-MENDOZA A, GONZ'ALEZ-CΌRDOVA A F, et al. Potential role of natural bioactive peptides for development of cosmeceutical skin products[J]. Peptides, 2019, 122: 170170. doi: 10.1016/j.peptides.2019.170170
|
[18] |
CARRASCO-CASTILLA J, HERNÁNDEZ-ÁLVAREZ A J, JIMĔNEZ-MARTĹNEZIMÉNEZ C, et al. Antioxidant and metal chelating activities of peptide fractions from phaseolin and bean protein hydrolysates[J]. Food Chem, 2012, 135(3): 1789-1795. doi: 10.1016/j.foodchem.2012.06.016
|
[19] |
林善婷, 胡晓, 李来好, 等. 罗非鱼皮蛋白肽-Fe2+结合物的制备及性质分析[J]. 食品科学, 2021, 42(8): 157-164. doi: 10.7506/spkx1002-6630-20200307-117
|
[20] |
GUO L D, HARNEDY P A, O'KEEFFE M B, et al. Fractionation and identification of Alaska pollock skin collagen-derived mineral chelating peptides[J]. Food Chem, 2015, 173(15): 536-542.
|
[21] |
YU Q, LI J W, FAN L P. Effect of drying methods on the microstructure, bioactivity substances, and antityrosinase activity of asparagus stems[J]. J Agric Food Chem, 2019, 67(5): 1537-1545. doi: 10.1021/acs.jafc.8b05993
|
[22] |
张金杨. 罗非鱼促钙吸收肽的制备分离及生物活性研究[D]. 上海: 上海海洋大学, 2018: 13-14.
|
[23] |
WU W M, HE L C, LIANG Y H, et al. Preparation process optimization of pig bone collagen peptide-calcium chelate using response surface methodology and its structural characterization and stability analysis[J]. Food Chem, 2019, 284(30): 80-89.
|
[24] |
SHEN Z W, WANG Y J, GUO Z, et al. Novel tyrosinase inhibitory peptide with free radical scavenging ability[J]. J Enzym Inhib Med Chem, 2019, 34(1): 1633-1640. doi: 10.1080/14756366.2019.1661401
|
[25] |
CHEN M J, LIU J R, SHEU J F, et al. Study on skin care properties of milk kefir whey[J]. Asian-Australas J Anim Sci, 2006, 19(6): 905-908. doi: 10.5713/ajas.2006.905
|
[26] |
DENG Y J, HUANG L X, ZHANG C H, et al. Skin-care functions of peptides prepared from Chinese quince seed protein: sequences analysis, tyrosinase inhibition and molecular docking study[J]. Ind Crops Prod, 2020, 148: 112331. doi: 10.1016/j.indcrop.2020.112331
|
[27] |
XIE N, HUANG J, LI B, et al. Affinity purification and characterisation of zinc chelating peptides from rapeseed protein hydrolysates: possible contribution of characteristic amino acid residues[J]. Food Chem, 2015, 173(15): 210-217.
|
[28] |
冯兰. 黑色素生成抑制肽的设计、筛选及作用机制探究[D]. 大连: 大连理工大学, 2018: 15-22.
|
[29] |
NIE H L, LIU L, YANG H Q, et al. A novel heptapeptide with tyrosinase inhibitory activity identified from a phage display library[J]. Appl Biochem Biotechnol, 2017, 181(1): 219-232. doi: 10.1007/s12010-016-2208-3
|
[30] |
TORRES-FUENTES C, ALAIZ M, VIOQUE J. Chickpea chelating peptides inhibit copper-mediated lipid peroxidation[J]. J Sci Food Agric, 2014, 94(15): 3181-3188. doi: 10.1002/jsfa.6668
|
[31] |
MEGĺAS C, PEDROCHE J, YUST M, et al. Affinity purification of copper chelating peptides from chickpea protein hydrolysates[J]. J Agric Food Chem, 2007, 55(10): 3949-3954. doi: 10.1021/jf063401s
|
[32] |
DAS D, MITRA S, KUMAR R, et al. Copper-induced spectroscopic and structural changes in short peptides derived from azurin[J]. Arch Biochem Biophys, 2020, 687(15): 108388.
|
[33] |
SCHURINK M, van BERKEL W J H, WICHERS H J, et al. Novel peptides with tyrosinase inhibitory activity[J]. Peptides, 2007, 28(3): 485-495. doi: 10.1016/j.peptides.2006.11.023
|
[34] |
ARICHAYA M, PORNLERT A, SUWIMON K. Chicken foot broth byproduct: a new source for highly effective peptide-calcium chelate[J]. Food Chem, 2021, 345(30): 128713.
|
[35] |
MA Q F, HU J, WU W H, et al. Characterization of copper binding to the peptide amyloid-β (1-16) associated with Alzheimer's disease[J]. Biopolymers, 2006, 83(1): 20-31. doi: 10.1002/bip.20523
|
[36] |
OOKUBO N, MICHIUE H, KITAMATSU M, et al. The transdermal inhibition of melanogenesis by a cell-membrane-permeable peptide delivery system based on poly-arginine[J]. Biomaterials, 2014, 35(15): 4508-4516. doi: 10.1016/j.biomaterials.2014.01.052
|
[1] | WANG Dongwei, CHEN Yongjin, FANG Di'an, ZHOU Yanfeng. Ecological health assessment of Cyprinus carpio and Leiocassis longirostris national aquatic germplasm resources reserve in Huaihe River[J]. South China Fisheries Science, 2023, 19(1): 30-38. DOI: 10.12131/20220109 |
[2] | WANG Teng, LIU Yong, QUAN Qiumei, LIN Lin, XIAO Yayuan, LI Chunhou, LI Hong. Community structure characteristics of zooplankton in main freshwater rivers of Jiangmen City, Guangdong Province[J]. South China Fisheries Science, 2021, 17(4): 9-17. DOI: 10.12131/20210019 |
[3] | PENG Biaobiao, ZHAO Feng, WANG Sikai, ZHANG Tao, YANG Gang, MIAO Zhongbo, ZHUANG Ping. Habitat traits of Lateolabrax japonicus in different subhabitats of Yangtze River Estuary[J]. South China Fisheries Science, 2021, 17(4): 1-8. DOI: 10.12131/20210023 |
[4] | XIA Yuguo, LI Yuefei, ZHU Shuli, LI Jie, LI Xinhui. Spatio-temporal patterns of CPUE of grass carp and silver carp and effect of temperature on CPUE in Pearl River basin[J]. South China Fisheries Science, 2021, 17(1): 10-16. DOI: 10.12131/20200131 |
[5] | PENG Min, HAN Yaoquan, WANG Dapeng, SHI Jun, WU Weijun, LI Yusen, LEI Jianjun, HE Anyou. Genetic diversity analysis of Ptychidio jordani in Xijiang River flowing through Guangxi Province based on mitochondrial Cytb gene sequence[J]. South China Fisheries Science, 2020, 16(5): 10-18. DOI: 10.12131/20200041 |
[6] | QIN Dongli, HUANG Xiaoli, GAO Lei, WANG Peng, CHEN Zhongxiang, WU Song, JIANG Haifeng, LIU Huan, HAN Gang. Residues and health risk assessment of pesticides in river crab by integrated rice field aquaculture in northeast China[J]. South China Fisheries Science, 2018, 14(6): 89-98. DOI: 10.12131/20180034 |
[7] | LAN Lan, LIU Guangfeng, WANG Jiangyong, WANG Ruixuan, LIU Wensheng. DGGE fingerprinting of bacterial community in aquaculture water of Crassostrea ariakensis from Guandu district, Zhanjiang city[J]. South China Fisheries Science, 2012, 8(5): 31-38. DOI: 10.3969/j.issn.2095-0780.2012.05.005 |
[8] | LI Benwang, LAN Zhaojun, LI Qiang, HUANG Yongqiang, MO Jiehua, WANG Xiaobin, LI Chunzhi, LI Min. Investigation of fish resources in fresh water and estuary of Dongguan City[J]. South China Fisheries Science, 2011, 7(2): 22-28. DOI: 10.3969/j.issn.2095-0780.2011.02.004 |
[9] | LIU Qun, XU Binduo, REN Yiping. Prediction of freshwater aquaculture production of Qingdao city by using a grey prediction model[J]. South China Fisheries Science, 2009, 5(5): 38-43. DOI: 10.3969/j.issn.1673-2227.2009.05.007 |
[10] | LI Jian-sheng, CHENG Jia-hua. Dynamic analysis of fishery biology resources of trawl in waters of the Yangtze River Estuary[J]. South China Fisheries Science, 2005, 1(2): 21-25. |