XIA Yuguo, LI Yuefei, ZHU Shuli, LI Jie, LI Xinhui. Spatio-temporal patterns of CPUE of grass carp and silver carp and effect of  temperature on CPUE in Pearl River basin[J]. South China Fisheries Science, 2021, 17(1): 10-16. DOI: 10.12131/20200131
Citation: XIA Yuguo, LI Yuefei, ZHU Shuli, LI Jie, LI Xinhui. Spatio-temporal patterns of CPUE of grass carp and silver carp and effect of  temperature on CPUE in Pearl River basin[J]. South China Fisheries Science, 2021, 17(1): 10-16. DOI: 10.12131/20200131

Spatio-temporal patterns of CPUE of grass carp and silver carp and effect of  temperature on CPUE in Pearl River basin

More Information
  • Received Date: June 18, 2020
  • Revised Date: August 12, 2020
  • Accepted Date: August 24, 2020
  • Available Online: December 04, 2020
  • We investigated the production and economic benefits of grass carp (Ctenopharyngodon idellus) and silver carp (Hypophthalmichthys molitrix) in the Pearl River basin by using the method of isometric random sampling. A total of 90 vessels were daily surveyed from nine locations from 2016 to 2018. The kruskal test, generalized additive model and time series analysis were used to analyze the spatial and temporal patterns of CPUE (Catch per unit effort) of grass carp and silver carp and to explore the effect of  temperature on the CPUE. The results show that the biomass of grass carp and silver carp attributed (6.6±8.1)% and (4.4±5.0)% respectively, to the total catches in the Pearl River basin, and produced (6.0±8.2)% and (2.5±2.6)% economic benefit of the total income. In addition, the CPUE was (5.5±7.3) and (5.6±10.3) kg·(vessel·month)−1, respectively. The CPUE of two species was significantly higher in the middle and upper reaches than that in the estuary area (P<0.05). The temporal variations in CPUE of grass carp and silver carp were mainly effected by closed season. Temperature had a significant positive effect on the CPUE of both species (P<0.01). The CPUE of grass carp and silver carp showed an increasing and decreasing trend with year, respectively. By contrast with the historical data, the biomass of both carps increased obviously in the past decade. The increasing production of grass carp and silver carp observed in this study might be largely benefited from proliferation and release as well as closed season.

  • [1]
    农业农村部渔业渔政管理局. 中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2019: 24-25.
    [2]
    王尚玉, 廖文根, 陈大庆, 等. 长江中游四大家鱼产卵场的生态水文特性分析[J]. 长江流域资源与环境, 2008, 17(6): 892-897.
    [3]
    刘飞, 林鹏程, 黎明政, 等. 长江流域鱼类资源现状与保护对策[J]. 水生生物学报, 2019, 43(S): 144-156.
    [4]
    张亚辉, 龚江, 梁杰锋, 等. 体重和温度对草鱼摄食小浮萍的影响[J]. 水生态学杂志, 2018, 39(1): 56-62.
    [5]
    薛慧敏, 李跃飞, 武智, 等. 水温对珠江中下游鳜属鱼类早期资源补充的影响[J]. 淡水渔业, 2019, 49(3): 59-65.
    [6]
    GUO C, CHEN Y, GOZLAN R E, et al. Biogeographic freshwater fish pattern legacy revealed despite rapid socio-economic changes in China[J]. Fish Fish, 2019, 20(5): 857-869. doi: 10.1111/faf.12380
    [7]
    GISLASON H, DAAN N, RICE J, et al. Size, growth, temperature and the natural mortality of marine fish[J]. Fish Fish, 2010, 11(2): 149-158. doi: 10.1111/j.1467-2979.2009.00350.x
    [8]
    唐丽君, 张筱帆, 张堂林, 等. 水温对鲢早期发育的影响[J]. 华中农业大学学报, 2014, 33(1): 92-96.
    [9]
    柯志新, 谢平, 过龙根, 等. 太湖梅梁湾生物控藻围栏内鲢、鳙比肠长和比肝重的动态变化[J]. 水生态学杂志, 2012, 33(3): 9-13.
    [10]
    孙健, 贺锋, 吴振斌, 等. 影响草鱼摄食水生植物因素的研究进展[J]. 水产学杂志, 2019, 32(3): 53-57.
    [11]
    孟艳丽, 曾名湧, 张军宁, 等. 温度对鲢鱼肽美拉德反应产物的化学特性和抗氧化活性的影响[J]. 海洋湖沼通报, 2013(1): 69-74.
    [12]
    蒋清, 黄应平, 袁喜, 等. 不同温度下重复疲劳运动对鲢幼鱼游泳能力及代谢率的影响[J]. 水生态学杂志, 2016, 37(6): 89-94.
    [13]
    罗伟, 许艳, 刘晓娟, 等. 水温对草鱼血清活性氧含量及抗氧化防御系统的影响[J]. 淡水渔业, 2017, 47(4): 3-7.
    [14]
    曹平, 穆祥鹏, 白音包力皋, 等. 与鱼道水力设计相关的草鱼幼鱼游泳行为特性研究[J]. 水利学报, 2017, 48(12): 1456-1464.
    [15]
    《中国河湖大典》编纂委员会. 中国河湖大典 珠江卷[M]. 北京: 中国水利水电出版社, 2013: 1-6.
    [16]
    李新辉, 陈方灿, 梁沛文. 珠江水系鱼类原色图集 (广东段)•前言[M]. 北京: 科学出版社, 2018: 1.
    [17]
    XING Y C, ZHANG C G, FAN E Y, et al. Freshwater fishes of China: species richness, endemism, threatened species and conservation[J]. Divers Distrib, 2016, 22(3): 358-370. doi: 10.1111/ddi.12399
    [18]
    张迎秋, 黄稻田, 李新辉, 等. 西江鱼类群落结构和环境影响分析[J]. 南方水产科学, 2020, 16(1): 42-52.
    [19]
    李跃飞, 李新辉, 谭细畅, 等. 西江肇庆江段渔业资源现状及其变化[J]. 水利渔业, 2008, 28(2): 80-83.
    [20]
    李捷, 李新辉, 贾晓平, 等. 西江鱼类群落多样性及其演变[J]. 中国水产科学, 2010, 17(2): 298-311.
    [21]
    帅方敏, 李新辉, 刘乾甫, 等. 珠江水系鱼类群落多样性空间分布格局[J]. 生态学报, 2017, 37(9): 3182-3192.
    [22]
    APPELBERG M. Swedish standard methods for sampling freshwater fish with multi-mesh gillnets[J]. Fiskeriverket Inf, 2000, 1: 3-32.
    [23]
    MAUNDER M N, PUNT A E. A review of integrated analysis in fisheries stock assessment[J]. Fish Res, 2013, 142: 61-74. doi: 10.1016/j.fishres.2012.07.025
    [24]
    HOYLE S D, LANGLEY A D. Scaling factors for multi-region stock assessments, with an application to Indian Ocean tropical tunas[J]. Fish Res, 2020, 228: 105586. doi: 10.1016/j.fishres.2020.105586
    [25]
    ZUUR A F, IENO E N, WALKER N J, et al. Mixed effects models and extensions in ecology with R[M]. New York: Springer, 2009: 101-142.
    [26]
    XIA Y, ZHAO W, XIE Y, et al. Ecological and economic impacts of exotic fish species on fisheries in the Pearl River basin[J]. Manag Biol Inv, 2019, 10(1): 127-138.
    [27]
    R Development Core Team. R: a language and environment for statistical computing [EB/OL]. [2019-11-12]. http://www.r-project.org/.
    [28]
    WARNES G R, BOLKER B, BONEBAKKER L, et al. Various R programming tools for plotting data [EB/OL]. [2020-07-05]. https://cran.r-project.org/web/packages/gplots/.
    [29]
    TIAO G C, BOX G E P. Modeling multiple time series with applications[J]. J Am Stat Assoc, 1981, 76(376): 802-816.
    [30]
    LIAN Y, HUANG G, GODLEWSKA M, et al. Hydroacoustic estimates of fish biomass and spatial distributions in shallow lakes[J]. Chin J Oceanol Limnol, 2017, 36(2): 587-597.
    [31]
    GALAIDUK R, RADFORD B T, HARVEY E S. Utilizing individual fish biomass and relative abundance models to map environmental niche associations of adult and juvenile targeted fishes[J]. Sci Rep, 2018, 8(1): 9457. doi: 10.1038/s41598-018-27774-7
    [32]
    欧阳力剑, 郭学武. 温度对鱼类摄食及生长的影响[J]. 海洋科学集刊, 2008, 49: 87-95.
    [33]
    农业部. 农业部关于发布珠江、闽江及海南省内陆水域禁渔期制度的通告[EB/OL]. (2017-03-20). [2020-04-06]. http://www.moa.gov.cn/nybgb/2017/dsanq/201712/t20171228_6133423.htm.
    [34]
    俞立雄. 长江中游四大家鱼典型产卵场地形及水动力特征研究[D]. 重庆: 西南大学, 2018: 85-109.
  • Related Articles

    [1]LI Beixing, LI Aoxue, DONG Jianyu, LYU Shaoliang, WANG Xuefeng. Intertidal macrozoobenthic community structure and its disturbed state in Zhanjiang Bay[J]. South China Fisheries Science, 2023, 19(2): 12-20. DOI: 10.12131/20220199
    [2]Huijuan WANG, Wenbo ZHANG, Honghui HUANG, Shannan XU, Huaxue LIU. Trophic structure of fishery organism assemblage in Daya Bay based on carbon and nitrogen stable isotope analysis[J]. South China Fisheries Science, 2021, 17(5): 101-109. DOI: 10.12131/20210005
    [3]ZENG Lei, CHEN Guobao, LI Chunhou, YU Jie. Seasonal heterogeneity of nekton community and its ecological effect at Daya Bay mouth[J]. South China Fisheries Science, 2019, 15(3): 22-32. DOI: 10.12131/20180246
    [4]WANG Lianggen, LI Yafang, DU Feiyan, NING Jiajia, XU Lei, XIAO Yayuan, LI Chunhou. Zooplankton community characteristics and impact on ichthyoplankton in artificial reefs and island reefs of Daya Bay[J]. South China Fisheries Science, 2018, 14(2): 41-50. DOI: 10.3969/j.issn.2095-0780.2018.02.006
    [5]MO Baolin, QIN Chuanxin, CHEN Pimao, DIAO Yingjiao, YUAN Huarong, LI Xiaoguo, TONG Fei, FENG Xue. Preliminary analysis of structure and function of Daya Bay ecosystem based on Ecopath model[J]. South China Fisheries Science, 2017, 13(3): 9-19. DOI: 10.3969/j.issn.2095-0780.2017.03.002
    [6]LIAO Xiuli, CHEN Pimao, MA Shengwei, CHEN Haigang. Community structure of phytoplankton and its relationship with environmental factors before and after construction of artificial reefs in Yangmeikeng, Daya Bay[J]. South China Fisheries Science, 2013, 9(5): 109-119. DOI: 10.3969/j.issn.2095-0780.2013.05.017
    [7]GU Xiaoli, LI Chunhou. A preliminary study of heterotrophic bacteria in Daya Bay[J]. South China Fisheries Science, 2009, 5(4): 64-68. DOI: 10.3969/j.issn.1673-2227.2009.04.012
    [8]DU Feiyan, WANG Xuehui, LI Chunhou, ZHANG Hanhua, JIA Xiaoping. Study on species diversity of macrobenthos in Daya Bay, South China Sea[J]. South China Fisheries Science, 2008, 4(6): 33-41.
    [9]LIN Lin, LI Chunhou, DU Feiyan, DAI Ming, HUANG Honghui. GIS-based comprehensive assessment of marine ecological environment quality in Daya Bay[J]. South China Fisheries Science, 2007, 3(5): 19-25.
    [10]LIANG Chao-yu, ZHANG Han-hua, WU Jin-feng. Study on species composition, quantity distribution and biodiversity of intertidal benthos in Daya Bay[J]. South China Fisheries Science, 2005, 1(3): 42-48.
  • Cited by

    Periodical cited type(2)

    1. 董建宇,邱堃龙,曾鸿滨,王学锋. 鉴江口潮间带春季底栖双壳贝类多样性与群落结构特征初探. 海洋科学. 2024(05): 13-21 .
    2. 李昭川,张明兴,康贤炜,娄亚迪,王莹,王菊英. 河口和近海水体分类分区国内外研究进展. 海洋环境科学. 2024(05): 672-683 .

    Other cited types(0)

Catalog

    Article views (1038) PDF downloads (75) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return