YAN Jiao, GAO Kunpeng, YU Kexin, SUN Jianan, MAO Xiangzhao. Heterologous expression of lipase Sv-lip5 and its application in hydrolysis of astaxanthin ester[J]. South China Fisheries Science, 2022, 18(2): 31-38. DOI: 10.12131/20210293
Citation: YAN Jiao, GAO Kunpeng, YU Kexin, SUN Jianan, MAO Xiangzhao. Heterologous expression of lipase Sv-lip5 and its application in hydrolysis of astaxanthin ester[J]. South China Fisheries Science, 2022, 18(2): 31-38. DOI: 10.12131/20210293

Heterologous expression of lipase Sv-lip5 and its application in hydrolysis of astaxanthin ester

More Information
  • Received Date: October 09, 2021
  • Revised Date: December 07, 2021
  • Accepted Date: January 06, 2022
  • Available Online: January 12, 2022
  • Astaxanthin has a variety of physiological activities, but its most common form in nature is astaxanthin ester bound with different fatty acids. Hydrolysis of astaxanthin ester into free astaxanthin is an important research direction to improve the absorption and utilization of astaxanthin ester and to prepare astaxanthin ester with specific configuration. In this study, we heterologously expressed Sv-lip5 derived from Streptomyces violascens ATCC 27968 in Bacillus subtilis to explore the enzymatic properties and its application in astaxanthin ester hydrolysis. The results show that the optimal temperature of Sv-lip5 was 45 ℃; the optimal pH was 10.0 (Gly-NaOH buffer); and the enzyme activity of Sv-lip5 was higher than 55.7% after incubation at 35−55 ℃ for 21 h. As an alkaline resistant enzyme, the relative enzyme activity of Sv-lip5 could remain over 70% after incubation for 48 h under alkaline conditions. Sv-lip5 could hydrolyze astaxanthin ester in Haematococcus pluvialis oil effectively. Using p-nitrophenol palmitate as substrate, the specific activity of Sv-lip5 was 12.46 U·g−1. The optimal hydrolysis conditions of astaxanthin ester were: pH of 8.0, ratio of ethanol to buffer of 1:12; and the optimal enzyme dosage and time were 900 mg and 12 h, respectively. After adding 900 mg enzyme powder to 5.5 mL reaction system, the hydrolysis effect was obvious in 1 h, and the highest hydrolysis rate was 98.27% at 12th hour. The yield of astaxanthin in 200 μg astaxanthin ester was 147.48 μg. This method is high-efficiency for the biological hydrolysis preparation of free astaxanthin.
  • [1]
    周童, 刘宝锁, 张博, 等. 类胡萝卜素对合浦珠母贝热休克蛋白基因HSP22表达的影响[J]. 南方水产科学, 2018, 14(5): 60-69.
    [2]
    MULARCZYK M, MICHALAK I, MARYCZ K. Astaxanthin and other nutrients from Haematococcus pluvialis-multifunctional applications[J]. Mar Drug, 2020, 18(9): 459. doi: 10.3390/md18090459
    [3]
    SUDHARSHAN S J, DYAVAIAH M. Astaxanthin protects oxidative stress mediated DNA damage and enhances longevity in Saccharomyces cerevisiae[J]. Biogerontology, 2021, 22(1): 81-100. doi: 10.1007/s10522-020-09904-9
    [4]
    LI M Y, GAO C S, DU X Y, et al. Effect of sub-chronic exposure to selenium and astaxanthin on Channa argus: bioaccumulation, oxidative stress and inflammatory response[J]. Chemosphere, 2020, 244: 125546. doi: 10.1016/j.chemosphere.2019.125546
    [5]
    PENG Y J, LU J W, LIU F C, et al. Astaxanthin attenuates joint inflammation induced by monosodium urate crystals[J]. FASEB J, 2020, 34(8): 11215-11226. doi: 10.1096/fj.202000558RR
    [6]
    KANG H, LEE Y, BAE M, et al. Astaxanthin inhibits alcohol-induced inflammation and oxidative stress in macrophages in a sirtuin 1-dependent manner[J]. J Nutr Biochem, 2020, 85: 108477. doi: 10.1016/j.jnutbio.2020.108477
    [7]
    ZHOU X, ZHANG J, LI Y, et al. Astaxanthin inhibits microglia M1 activation against inflammatory injury triggered by lipopolysaccharide through down-regulating miR-31-5p[J]. Life Sci, 2021, 267: 118943. doi: 10.1016/j.lfs.2020.118943
    [8]
    VISIOLI F, ARTARIA C. Astaxanthin in cardiovascular health and disease: mechanisms of action, therapeutic merits, and knowledge gaps[J]. Food Funct, 2017, 8(1): 39-63. doi: 10.1039/C6FO01721E
    [9]
    PENG J, XIANG W Z, TANG Q M, et al. Comparative analysis of astaxanthin and its esters in the mutant E1 of Haematococcus pluvialis and other green algae by HPLC with a C30 column[J]. Sci China Life Sci, 2008, 51(12): 1108-1115. doi: 10.1007/s11427-008-0146-1
    [10]
    LORENZ R T, CYSEWSKI G R. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin[J]. Trends Biotechnol, 2000, 18(4): 160-167. doi: 10.1016/S0167-7799(00)01433-5
    [11]
    QIAO X, YANG L, GU J Y, et al. Kinetic interactions of nanocomplexes between astaxanthin esters with different molecular structures and β -lactoglobulin[J]. Food Chem, 2021, 335: 127633. doi: 10.1016/j.foodchem.2020.127633
    [12]
    韩吉平, 江宁, 诸永志, 等. 天然虾青素的制备和功能研究进展[J]. 江苏农业科学, 2021, 49(8): 56-60.
    [13]
    CAO Y R, YANG L, QIAO X, et al. Dietary astaxanthin: an excellent carotenoid with multiple health benefits[J]. Crit Rev Food Sci Nutr, 2021, 28: 1-27.
    [14]
    赵唯雯, 高梦楠, 黄汉昌, 等. 高效液相色谱法测定保健食品中的虾青素含量[J]. 食品安全质量检测学报, 2021, 12(6): 2229-2234.
    [15]
    DU P F, JIN M J, YANG L H, et al. Determination of astaxanthin in feeds using high performance liquid chromatography and an efficient extraction method[J]. J Liq Chromatogr Relat Technol, 2016, 39(1): 35-43. doi: 10.1080/10826076.2015.1119160
    [16]
    刘志东, 马德蓉, 陈雪忠, 等. 南极磷虾虾青素研究进展[J]. 大连海洋大学学报, 2021, 36(5): 866-874.
    [17]
    TOOMEY M B, MCGRAW K J. Modified saponification and HPLC methods for analyzing carotenoids from the retina of quail: implications for its use as a nonprimate model species[J]. Invest Ophthalmol Vis Sci, 2007, 48(9): 3976-3982. doi: 10.1167/iovs.07-0208
    [18]
    AMBATI R R, PHANG S M, RAVI S, et al. Astaxanthin: sources, extraction, stability, biological activities and its commercial applications: a review[J]. Mar Drugs, 2014, 12(1): 128-152. doi: 10.3390/md12010128
    [19]
    CHEMAT F, ROMBAUT N, MEULLEMIESTRE A, et al. Review of green food processing techniques, preservation, transformation, and extraction[J]. Innov Food Sci Emerg Technol, 2017, 41: 357-377. doi: 10.1016/j.ifset.2017.04.016
    [20]
    孔凡华, 徐佳佳, 郭倩, 等. 高效液相色谱法测定虾青素油中虾青素的含量[J]. 食品与发酵工业, 2021, 47(6): 214-220.
    [21]
    ZHAO Y Y, GUAN F F, WANG G L, et al. Astaxanthin preparation by lipase-catalyzed hydrolysis of its esters from Haematococcus pluvialis algal extracts[J]. Int J Food Sci, 2011, 76(4): 643-650.
    [22]
    GAO K P, WANG X F, JIANG H, et al. Identification of a GDSL lipase from Streptomyces bacillaris and its application in the preparation of free astaxanthin[J]. J Biotechnol, 2021, 325: 280-287. doi: 10.1016/j.jbiotec.2020.10.009
    [23]
    LACKER T, STROHSCHEIN S, ALBERT K. Separation and identification of various carotenoids by C30 reversed-phase high-performance liquid chromatography coupled to UV and atmospheric pressure chemical ionization mass spectrometric detection[J]. J Chromatogr A, 1999, 854(1/2): 37-44.
    [24]
    YANG S, ZHOU Q X, YANG L, et al. Effect of thermal processing on astaxanthin and astaxanthin esters in Pacific white shrimp Litopenaeus vannamei[J]. J Oleo Sci, 2015, 64(3): 243-253. doi: 10.5650/jos.ess14219
    [25]
    GAO K P, CHU W Q, SUN J A, et al. Identification of an alkaline lipase capable of better enrichment of EPA than DHA due to fatty acids selectivity and regioselectivity[J]. Food Chem, 2020, 330: 127225. doi: 10.1016/j.foodchem.2020.127225
    [26]
    GAO W Y, WU K, CHEN L F, et al. A novel esterase from a marine mud metagenomic library for biocatalytic synthesis of short-chain flavor esters[J]. Microb Cell Factories, 2016, 15(1): 41. doi: 10.1186/s12934-016-0435-5
    [27]
    PEREIRA M R, MERCALDI G F, MAESTER T C, et al. Est16, a new esterase isolated from a metagenomic library of a microbial consortium specializing in diesel oil degradation[J]. PLoS One, 2017, 10(7): e0133723.
    [28]
    张昕怡, 许蕊, 王钰棋, 等. 新型嗜热耐碱脂肪酶的纯化表征及应用[J]. 化工学报, 2020, 71(11): 5246-5255.
    [29]
    叶凤凌, 贾利蓉, 何强, 等. pH和缓冲体系对植物多酚抑制脂氧合酶活性的影响[J]. 食品与机械, 2021, 37(4): 32-41.
    [30]
    SYAL P, GUPTA R. Heterologous expression of lipases YLIP4, YLIP5, YLIP7, YLIP13, and YLIP15 from Yarrowia lipolytica MSR80 in Escherichia coli: substrate specificity, kinetic comparison, and enantioselectivity[J]. Biotechnol Appl Biochem, 2017, 64(6): 851-861. doi: 10.1002/bab.1542
    [31]
    FU C Z, HU Y F, XIE F, et al. Molecular cloning and characterization of a new cold-active esterase from a deep-sea metagenomic library[J]. Appl Microbiol Biotechnol, 2011, 90(3): 961-70. doi: 10.1007/s00253-010-3079-0
    [32]
    HUANG J J, YANG Z, ZHU R Y, et al. Efficient heterologous expression of an alkaline lipase and its application in hydrolytic production of free astaxanthin[J]. Biotechnol Biofuels, 2018, 11(181): 297-326.
    [33]
    MULINARI J, OLIVEIRA J V, HOTZA D. Lipase immobilization on ceramic supports: an overview on techniques and materials[J]. Biotechnol Adv, 2020, 42: 107581. doi: 10.1016/j.biotechadv.2020.107581
    [34]
    MATSUMOTO T, YAMADA R, OGINO H. Chemical treatments for modification and immobilization to improve the solvent-stability of lipase[J]. World J Microbiol Biotechnol, 2019, 35(12): 1-8.
  • Related Articles

    [1]LUO Yingying, HUANG Hui, LI Laihao, HAO Shuxian, CHEN Shengjun, WEI Ya, CEN Jianwei, XIANG Huan. Quality improvement and mechanism analysis of non-rinsing tilapia surimi gel[J]. South China Fisheries Science, 2025, 21(2): 164-173. DOI: 10.12131/20240238
    [2]CUI Qiaoyan, LI Laihao, CHEN Tianyu, CHEN Shengjun, HUANG Hui, ZHAO Yongqiang, LI Chunsheng. Improvement of gel strength of fermented tilapia surimi by Lactiplantibacillus plantarum through inhibition of protein hydrolysis[J]. South China Fisheries Science, 2024, 20(4): 1-10. DOI: 10.12131/20240060
    [3]WANG Xin, LI Mengzhe, ZHANG Wei, KONG Yunfei, XIONG Zhiyu, SHI Tong, BAO Yulong, YUAN Li, ZHANG Shiyong, WANG Minghua, CHEN Xiaohui, GAO Ruichang. Evaluation of gel properties of heat-induced surimi of Ictalurus punctatus from four genealogies[J]. South China Fisheries Science, 2023, 19(3): 164-172. DOI: 10.12131/20220198
    [4]GE Mengmeng, SHEN Jiandong, TANG Xiaohang, XIA Wenshui, XU Yanshun. Optimization of thermal sterilization process for low-acid and acidified instant laver[J]. South China Fisheries Science, 2022, 18(6): 127-136. DOI: 10.12131/20220003
    [5]QI Bo, YANG Shaoling, WANG Yueqi, HU Xiao, YANG Xianqing, PAN Chuang, LI Laihao, WANG Lunan. Effect of carboxymethyl agar on gel properties of tilapia surimi[J]. South China Fisheries Science, 2022, 18(2): 83-89. DOI: 10.12131/20210311
    [6]LIU Fangfang, LIN Wanling, HAN Yingxue, LI Laihao, LI Chunsheng, YANG Xianqing, ZHOU Wenguo. Basic properties of surimi gel of five freshwater fish[J]. South China Fisheries Science, 2021, 17(2): 114-121. DOI: 10.12131/20200220
    [7]YIN Min, XIE Chongyou, PU Deyong, HUANG Jing, WANG Zhijian. Microstructure of oogenesis in Sinibrama taeniatus[J]. South China Fisheries Science, 2019, 15(2): 127-132. DOI: 10.12131/20180181
    [8]YU Shanshan, WANG Qinglin, DONG Yunwei. Effects of parent acclimation and heat-shock at gastrula on growth and development of sea cucumber larvae[J]. South China Fisheries Science, 2015, 11(4): 46-52. DOI: 10.3969/j.issn.2095-0780.2015.04.007
    [9]ZHANG Yuemei, BAO Yulong, LUO Yongkang, WANG Hang. Changes of biogenic amines and quality indicators of grass carp (Ctenpharyngodon idellus) during chilled storage and effect on biogenic amines during thermal processing[J]. South China Fisheries Science, 2013, 9(4): 56-61. DOI: 10.3969/j.issn.2095-0780.2013.04.010
    [10]HUANG Jiansheng, LU Weihua, ZOU Weili, WANG Yao. Determination of residual polychlorinated biphenyls (PCBs) in blubber of whale by gel permeation chromatography and gas chromatography/mass spectrometry[J]. South China Fisheries Science, 2009, 5(4): 9-12. DOI: 10.3969/j.issn.1673-2227.2009.04.002
  • Cited by

    Periodical cited type(11)

    1. 张婷娟,吴风超,周纷. 市售生姜油对白鲢鱼糜凝胶品质特性的影响. 食品科技. 2025(01): 146-153 .
    2. 金铮,于婉莹,赵文宇,刘宇轩,祁立波,白帆,董秀萍. 鲟鱼重组鱼排3D打印特性的研究. 食品与发酵工业. 2024(03): 241-249 .
    3. 步营,程亚佳,厉寒,朱文慧,励建荣,李学鹏,季广仁. 发芽糙米匀浆对带鱼鱼糜凝胶特性的影响. 农业工程学报. 2024(18): 292-301 .
    4. 林雅文,刘佳晨,李艾靑,高月,励建荣,李学鹏. 不同干燥方法对南美白对虾理化特性和微观结构的影响. 食品科学. 2023(19): 74-81 .
    5. 邹怡茜,陈海强,潘卓官,肖苏尧,周爱梅. 超高压耦合热处理对鳙鱼鱼糜凝胶特性和水分迁移的影响. 现代食品科技. 2022(12): 272-280 .
    6. 宋春勇,洪鹏志,周春霞,陈艾霖,冯瑞. 大豆油和预乳化大豆油对金线鱼鱼糜凝胶品质的影响. 食品科学. 2021(08): 90-97 .
    7. 梁雯雯,杨天,郑志红,郭建,陈胜军,汪秋宽,丛海花. 升温方式对二段加热鲢鱼糜水分分布和品质的影响. 大连海洋大学学报. 2021(04): 646-652 .
    8. 刘芳芳,林婉玲,李来好,吴燕燕,杨少玲,黄卉,杨贤庆,林织. 海鲈鱼糜加工及凝胶形成过程中蛋白质的变化机理. 食品科学. 2020(14): 15-22 .
    9. 郑静静,林琳,张艳凌,陆剑锋,姜绍通. 不同解冻方式对熟制小龙虾理化特性的比较分析. 现代食品科技. 2020(09): 188-194+108 .
    10. 李钊,李宁宁,刘玉,赵圣明,康壮丽,朱明明,计红芳,何鸿举,马汉军. 超高压对肌原纤维蛋白结构及其凝胶特性影响的研究进展. 食品与发酵工业. 2020(21): 304-309 .
    11. 王菲,隋好林. 不同水产养殖区福寿鱼的鱼糜凝胶品质研究. 江西水产科技. 2019(06): 10-14 .

    Other cited types(14)

Catalog

    Article views (620) PDF downloads (49) Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return