JIANG Rui, WU Yunchao, HUANG Xiaoping, LIU Songlin, CHEN Qiming. Heavy metal enrichment characteristics and risk assessment of typical fishes in tropical seagrass beds[J]. South China Fisheries Science, 2023, 19(1): 48-57. DOI: 10.12131/20220118
Citation: JIANG Rui, WU Yunchao, HUANG Xiaoping, LIU Songlin, CHEN Qiming. Heavy metal enrichment characteristics and risk assessment of typical fishes in tropical seagrass beds[J]. South China Fisheries Science, 2023, 19(1): 48-57. DOI: 10.12131/20220118

Heavy metal enrichment characteristics and risk assessment of typical fishes in tropical seagrass beds

More Information
  • Received Date: April 28, 2022
  • Revised Date: May 23, 2022
  • Accepted Date: June 14, 2022
  • Available Online: June 28, 2022
  • The ingestion of seagrass by herbivorous fish will affect the transfer process of metal elements in seagrass beds, and the accumulation of heavy metals will cause human ingestion risks. Taking two typical fish species (Siganus guttatus and S. fuscessens) eating seagrasses in two tropical seagrass beds as main research objects, we determined the enrichment of heavy metals and their contamination, and assessed the dietary exposure risk in seagrass bed environment and fishes. Then we further explored the transfer characteristics of heavy metals in seagrass bed ecosystems. The results show that the contents of Cu, Cd, Zn and Pb in fish muscles were at a low level. There are significant positive correlations between Cu and Pb, and between Zn and CD. The enrichment effects of Zn and Cu were greater than those of Cd and Pb, but only Zn showed an potential enrichment effect in these two fish muscles. The Zn contents in these two fishes showed a serious pollution risk, while Pb contents showed slight pollution, but the contents of Cu and Cd were at a normal risk level. Eating these two fishes has little health risk. Due to the different growth rates and food sources, the content, pollution and enrichment of heavy metals in S. fuscessens are slightly higher than those in S. guttatus. The contents and enrichment of heavy metals in seagrass beds are generally higher than those in fishes. The accumulation of heavy metals mainly occurs in seagrass, and the heavy metal content in fish decreases with higher trophic levels.
  • [1]
    SCOTT A L, YORK P H, DUNCAN C, et al. The role of herbivory in structuring tropical seagrass ecosystem service delivery[J]. Front Plant Sci, 2018, 9: 127. doi: 10.3389/fpls.2018.00127
    [2]
    JIANG Z J, HUANG D L, FANG Y, et al. Home for marine species: seagrass leaves as vital spawning grounds and food source[J]. Front Mar Sci, 2020, 7: 1-9. doi: 10.3389/fmars.2020.00001
    [3]
    WAYCOTT M, DUARTE C M, CARRUTHERS T J B, et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems[J]. Proc Nail Acad Sci USA, 2009, 106(30): 12377-12381. doi: 10.1073/pnas.0905620106
    [4]
    刘伟妍, 韩秋影, 唐玉琴, 等. 营养盐富集和全球温度升高对海草的影响[J]. 生态学志, 2017, 36(4): 1087-1096.
    [5]
    ASUNCION B, VICTORIA T, DOLA B, et al. Trace element accumulation and trophic relationships in aquatic organisms of the Sundarbans mangrove ecosystem (Bangladesh)[J]. Sci Total Environ, 2016, 545/546: 414-423. doi: 10.1016/j.scitotenv.2015.12.046
    [6]
    HU C, YANG X, DONG J, et al. Heavy metal concentrations and chemical fractions in sediment from Swan Lagoon, China: their relation to the physiochemical properties of sediment[J]. Chemosphere, 2018, 209: 848-856. doi: 10.1016/j.chemosphere.2018.06.113
    [7]
    CUI B, ZHANG Q, ZHANG K, et al. Analyzing trophic transfer of heavy metals for food webs in the newly-formed wetlands of the Yellow River Delta, China[J]. Environ Pollut, 2011, 159: 1297-1306. doi: 10.1016/j.envpol.2011.01.024
    [8]
    HUANG L, PU X, PAN J F, et al. Heavy metal pollution status in surface sediments of Swan Lake lagoon and Rongcheng Bay in the northern Yellow Sea[J]. Chemosphere, 2013, 93: 1957-1964. doi: 10.1016/j.chemosphere.2013.06.080
    [9]
    YUAN L, LIU G, YUAN Z, et al. Heavy metals (As, Hg and V) and stable isotope ratios (δ13C and δ15N) in fish from Yellow River Estuary, China[J]. Sci Total Environ, 2017, 613/614: 462-471.
    [10]
    RAINBOW P S. Trace metal bioaccumulation: models, metabolic availability and toxicity[J]. Environ Int, 2007, 33(4): 576-582. doi: 10.1016/j.envint.2006.05.007
    [11]
    MANUEL M C, ALEJANDRA S L, CELIA D F, et al. Distribution and bioconcentration of heavy metals in a tropical aquatic food web: a case study of a tropical estuarine lagoon in SE Mexico[J]. Environ Pollut, 2016, 210: 155-165. doi: 10.1016/j.envpol.2015.12.014
    [12]
    GRIBOFF J, HORACEK M, WUNDERLIN D A, et al. Bioaccumulation and trophic transfer of metals, As and Se through a freshwater food web affected by antrophic pollution in Cordoba, Argentina[J]. Ecotox Environ Safe, 2018, 148: 275-284. doi: 10.1016/j.ecoenv.2017.10.028
    [13]
    MONFERRAN M V, GARNERO P, de los ANGELES B M, et al. From water to edible fish. Transfer of metals and metalloids in the San Roque Reservoir (Córdoba, Argentina). Implications associated with fish consumption[J]. Ecol Indic, 2016, 63: 48-60. doi: 10.1016/j.ecolind.2015.11.048
    [14]
    TREVIZANI T H, PETTI M A V, RIBEIRO A P, et al. Heavy metal concentrations in the benthic trophic web of Martel Inlet, Admiralty Bay (King George Island, Antarctica)[J]. Mar Pollut Bull, 2018, 130: 198-205. doi: 10.1016/j.marpolbul.2018.03.031
    [15]
    邢孔敏, 陈石泉, 蔡泽富, 等. 海南东寨港表层沉积物重金属分布特征及污染评价[J]. 海洋科学进展, 2018, 36(3): 478-488. doi: 10.3969/j.issn.1671-6647.2018.03.014
    [16]
    陈石泉, 吴钟解, 蔡泽富, 等. 海南黎安港表层沉积物重金属分布特征及污染评价[J]. 海洋科学, 2018, 42(2): 124-133. doi: 10.11759/hykx20170730001
    [17]
    陈石泉, 张光星, 吴钟解, 等. 新村港表层沉积物重金属分布特征及污染评价[J]. 海洋湖沼通报, 2014(4): 144-152.
    [18]
    许战州, 朱艾嘉, 蔡伟叙, 等. 流沙湾海草床重金属富集特征[J]. 生态学报, 2011, 31(23): 259-265.
    [19]
    陈石泉, 庞巧珠, 蔡泽富, 等. 海南黎安港海草床分布特征、健康状况及影响因素分析[J]. 海洋科学, 2020, 44(11): 57-64.
    [20]
    陈启明, 刘松林, 张弛, 等. 海南典型热带海草床4种代表性鱼类的生长特征及其对海草资源量变化的响应[J]. 热带海洋学报, 2020, 39(5): 62-70.
    [21]
    KUITER R H, TONOZUKA T. Pictorial guide to Indonesian reef fishes [M]. Melbourne: Zoonetics Press, 2001: 100-893.
    [22]
    LIESKE E, MYERS R. Coral reef fishes: Caribbean, Indian Ocean and Pacific Ocean including the Red Sea [M]. New Jersey: Princeton University Press, 1998: 300-359.
    [23]
    蒋伟明, 韦明利, 姚久祥, 等. 点篮子鱼和南美白对虾池塘混养技术[J]. 南方农业, 2016, 10(33): 108-110. doi: 10.19415/j.cnki.1673-890x.2016.33.061
    [24]
    吴建绍, 杨求华, 陆振, 等. 褐篮子鱼鳃寄生多唇虫病的病原鉴定及其病理观察[J]. 中国水产科学, 2021, 28(3): 355-363.
    [25]
    许思思, 宋金明, 袁华茂, 等. 镉、汞、铅和石油烃复合污染对渤海湾常见渔业资源生物的影响初探[J]. 生态毒理学报, 2010, 5(6): 793-802.
    [26]
    HAO Y, CHEN L, ZHANG X L, et al. Trace elements in fish from Taihu Lake, China: levels, associated risks, and trophic transfer[J]. Ecotox Environ Safe, 2013, 90(1): 89-97.
    [27]
    SSZEFER P, GELDON J. Distribution and association of trace metals in soft tissue and byssus of mollusc Perna perna from the Gulf of Aden, Yemen[J]. Environ Int, 1997, 23(1): 53-61. doi: 10.1016/S0160-4120(96)00077-3
    [28]
    COPAT C, BELLA F, CASTAING M, et al. Heavy metals concentrations in fish from Sicily (Mediterranean Sea) and evaluation of possible health risks to consumers[J]. Bull Environ Contam Tox, 2012, 88(1): 78-83. doi: 10.1007/s00128-011-0433-6
    [29]
    SAHER N U, SIDDIQUI A S. Occurrence of heavy metals in sediment and their bioaccumulation in sentinel crab (Macrophthalmus depressus) from highly impacted coastal zone[J]. Chemosphere, 2019, 221: 89-98. doi: 10.1016/j.chemosphere.2019.01.008
    [30]
    杨玉峰, 梁浩亮, 黄舜琴, 等. 广东惠州3类海洋经济物种体内重金属含量分析和健康风险评估[J]. 生态科学, 2020, 39(3): 95-103. doi: 10.14108/j.cnki.1008-8873.2020.03.014
    [31]
    刘洋, 林彩, 陈金民, 等. 南海游泳动物重金属含量特征及风险评价[J]. 海洋环境科学, 2021, 40(3): 401-406,416. doi: 10.12111/j.mes.20200110
    [32]
    刘金苓, 李华丽, 唐以杰, 等. 珠海淇澳岛红树林湿地经济鱼类的重金属污染现状及对人体健康风险分析[J]. 生态科学, 2017, 36(5): 186-195.
    [33]
    孙玲玲, 宋金明, 于颖, 等. 荣成湾14种海洋经济生物体中的重金属水平与食用风险初步评价[J]. 海洋与湖沼, 2018, 49(1): 52-61. doi: 10.11693/hyhz20170500135
    [34]
    陈丽雯, 戴圣生, 雷富, 等. 涠洲岛近岸海域重金属污染状况研究[J]. 广西科学院学报, 2021, 37(1): 37-45. doi: 10.13657/j.cnki.gxkxyxb.20210429.001
    [35]
    YANG B, ZHOU J B, LU D L, et al. Phosphorus chemical speciation and seasonal variations in surface sediments of the Maowei Sea, northern Beibu Gulf[J]. Mar Pollut Bul, 2019, 141: 61-69. doi: 10.1016/j.marpolbul.2019.02.023
    [36]
    张晓举, 赵升, 冯春晖, 等. 渤海湾南部海域生物体内的重金属含量与富集因素[J]. 大连海洋大学学报, 2014, 29(3): 267-271. doi: 10.3969/J.ISSN.2095-1388.2014.03.013
    [37]
    孙维萍, 刘小涯, 潘建明, 等. 浙江沿海经济鱼类体内重金属的残留水平[J]. 浙江大学学报(理学版), 2012, 39(3): 338-344.
    [38]
    杨文超, 黄道建, 陈继鑫, 等. 大亚湾海域2009—2018年重金属时空分布及污染评价[J]. 华南师范大学学报(自然科学版), 2020, 52(5): 65-75.
    [39]
    贾钧博, 张嘉成, 张浩楠, 等. 珠江口水体中重金属含量及其生态风险评价[J]. 东莞理工学院学报, 2021, 28(1): 54-60.
    [40]
    张学超, 刘营, 宋吉德, 等. 威海双岛湾海域重金属的分布特征及生态风险评价[J]. 海洋学研究, 2014, 32(2): 85-90.
    [41]
    林红梅, 王伟力, 林彩, 等. 钦州湾及其邻近海域重金属的时空变化特征和影响因素[J]. 应用海洋学学报, 2020, 39(4): 490-500. doi: 10.3969/J.ISSN.2095-4972.2020.04.005
    [42]
    藏维铃, 叶林, 徐轩成, 等. 鲢、鲫鱼对锌富集作用的研究[J]. 淡水渔业, 1990(3): 29-30.
    [43]
    罗洪添, 王庆, 沈卓, 等. 南澳海域龙须菜和篮子鱼重金属含量及食用安全分析[J]. 海洋环境科学, 2018, 37(3): 362-368. doi: 10.12111/j.cnki.mes20180308
    [44]
    彭加喜, 徐向荣, 刘金铃, 等. 红海湾海产品体内重金属水平及人体暴露风险评估[J]. 生态科学, 2014, 33(5): 825-831.
    [45]
    AHMED A, RAHMAN M, SULTANA S, et al. Bioaccumulation and heavy metal concentration in tissues of some commercial fishes from the Meghna River Estuary in Bangladesh and human health implications[J]. Mar Pollut Bull, 2019, 145: 436-447. doi: 10.1016/j.marpolbul.2019.06.035
    [46]
    蔡文超, 区又君. 重金属离子铜对鱼类早期发育的毒性[J]. 南方水产, 2009, 5(5): 75-79.
    [47]
    潘添博. 必需微量元素添加剂在动物生产中的应用[J]. 畜牧兽医科技信息, 2021(2): 196-197. doi: 10.3969/J.ISSN.1671-6027.2021.02.184
    [48]
    VALLEE B L, FALCHUK K H. The biochemical basis of zinc physiology[J]. Physiol Rev, 1993, 73(1): 79-118. doi: 10.1152/physrev.1993.73.1.79
    [49]
    倪明龙, 周航, 罗立津. 广东省内珠江口海域深海鱼重金属富集特征及食用安全性评价[J]. 食品安全质量检测学报, 2019, 10(22): 7798-7805.
    [50]
    CUI L Y, JIANG Z J, HUANG X P, et al. Carbon transfer processes of food web and trophic pathways in a tropical eutrophic seagrass meadow[J]. Front Mar Sci, 2021, 29(8): 725282.
    [51]
    BARWICK M, MAHER W. Biotransference and biomagnification of selenium copper, cadmium, zinc, arsenic and lead in a temperate seagrassecosystem from lake Macquarie Estuary, NSW, Australia[J]. Mar Environ Res, 2003, 56(4): 471-502. doi: 10.1016/S0141-1136(03)00028-X
    [52]
    孙瑞莲, 周启星. 高等植物重金属耐性与超积累特性及其分子机理研究[J]. 植物生态学报, 2005, 29(3): 497-504. doi: 10.3321/j.issn:1005-264X.2005.03.022
    [53]
    美合日班·阿卜力米提, 王艳. 植物金属硫蛋白的金属结合及解毒研究进展[J]. 生物学杂志, 2021, 38(6): 104-110. doi: 10.3969/j.issn.2095-1736.2021.06.104
    [54]
    陈疆, 马炯. 6种高等植物重金属吸附基因的比较研究[J]. 广东农业科学, 2013, 40(9): 146-149,154. doi: 10.3969/j.issn.1004-874X.2013.09.042
    [55]
    杨晓龙, 郭美玉, 叶金清, 等. 黄渤海不同生长阶段的日本鳗草对5种重金属 (锌、铬、铜、铅、镉) 的生物蓄积[J]. 海洋环境科学, 2021, 40(6): 895-902. doi: 10.12111/j.mes.2021-x-0059
    [56]
    邵欣欣, 许晓曦, 吕萍萍, 等. 金属硫蛋白对鲤鱼不同组织重金属蓄积影响的研究[J]. 食品工业科技, 2013, 34(3): 120-123. doi: 10.13386/j.issn1002-0306.2013.03.076
  • Related Articles

    [1]PEI Ruonan, ZHAI Honglei, QI Bo, YANG Xianqing. Optimization of multi-enzymatic extraction of polysaccharide from Gelidium amansii by response surface methodology[J]. South China Fisheries Science, 2019, 15(6): 88-95. DOI: 10.12131/20190081
    [2]WANG Xiaohui, QI Bo, YANG Xianqing, YANG Shaoling, MA Haixia, DENG Jianchao. Optimization of enzymatic hydrolysis of protein in abandoned Porphyra haitanensis by response surface methodology and study on antioxidant activity of its hydrolysate[J]. South China Fisheries Science, 2019, 15(2): 93-101. DOI: 10.12131/20180099
    [3]YU Futian, CEN Jianwei, LI Laihao, YANG Xianqing, HANG Hui, HAO Shuxian, WEI Ya, ZHAO Yongqiang, LIN Zhi. Response surface methodology for optimization of sterilization effect on tilapia fillet with slightly acidic electrolyzed water[J]. South China Fisheries Science, 2019, 15(1): 77-84. DOI: 10.12131/20180164
    [4]ZHONG Zhihong, WANG Fei, CHEN Yonggui, DENG Hengwei, WANG Shifeng, SUN Yun, CHEN Xuefen, GUO Weiliang, ZHOU Yongcan. Synergism between Fructus mume and antibiotics against Vibrio harveyi based on response surface methodology[J]. South China Fisheries Science, 2018, 14(6): 81-88. DOI: 10.12131/20180056
    [5]LI Shasha, CAO Yucheng, HU Xiaojuan, LI Zhuojia, XU Yu, YANG Keng, XU Chuangwen, WEN Guoliang. Optimization for cultivation parameters of Bacillus sp. A4 using response surface methodology[J]. South China Fisheries Science, 2017, 13(5): 85-93. DOI: 10.3969/j.issn.2095-0780.2017.05.012
    [6]CHEN Kang, DAI Zhiyuan, SHEN Qing, HUANG Yaowen. Extraction of phospholipid from Euphausia superba by response surface method and determination of phospholipid molecular species[J]. South China Fisheries Science, 2017, 13(3): 104-112. DOI: 10.3969/j.issn.2095-0780.2017.03.014
    [7]ZHAO Donghao, WANG Xufeng, WANG Qiang, LI Zhiguang, HUANG Ke, LI Liudong. Influence of solvent on nitrofuran metabolites response by liquid chromatography-tandem mass spectrometry[J]. South China Fisheries Science, 2016, 12(6): 108-114. DOI: 10.3969/j.issn.2095-0780.2016.06.014
    [8]ZHAO Donghao, LI Zhiguang, WANG Xufeng, WANG Qiang, LI Yongxian, HUANG Ke, LI Liudong. Optimization of determination of nitrofuran metabolites in aquatic products by liquid chromatography tandem mass spectrometry[J]. South China Fisheries Science, 2015, 11(6): 58-64. DOI: 10.3969/j.issn.2095-0780.2015.06.008
    [9]WANG Zhongliang, HUANG Jiansheng, ZHANG Jiandong, CHEN Gang. Combined effect of light intensity and salinity on hatchability of Artemia cysts based on response surface methodology[J]. South China Fisheries Science, 2014, 10(3): 80-85. DOI: 10.3969/j.issn.2095-0780.2014.03.012
    [10]QI Bo, LI Laihao, YANG Xianqing, CHENG Shengjun, LIU Gang, LI Zhandong. Optimization technology of alkali processing of Eucheuma carrageenan by response surface methodology[J]. South China Fisheries Science, 2011, 7(6): 26-34. DOI: 10.3969/j.issn.2095-0780.2011.06.005
  • Cited by

    Periodical cited type(2)

    1. 吴燕燕,王悦齐,张涛,王迪,郑镇雄. 不同致死条件对冷鲜石斑鱼肉品质的影响. 上海海洋大学学报. 2023(02): 377-386 .
    2. 王雪松,谢晶. 竹荚鱼浸渍冻结液配方的优化与应用效果. 食品与发酵工业. 2021(19): 195-200 .

    Other cited types(3)

Catalog

    Article views PDF downloads Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return