HUANG Xingmei, ZHAO Wang, LI Changlin, DENG Zhenghua, ZHANG Yuwei, WEN Weigeng, MA Zhenhua, YU Gang. Effect of salinity on growth of planktonic larvae of sea cucumber (Holothuria leucospilota)[J]. South China Fisheries Science, 2022, 18(3): 111-117. DOI: 10.12131/20210100
Citation: HUANG Xingmei, ZHAO Wang, LI Changlin, DENG Zhenghua, ZHANG Yuwei, WEN Weigeng, MA Zhenhua, YU Gang. Effect of salinity on growth of planktonic larvae of sea cucumber (Holothuria leucospilota)[J]. South China Fisheries Science, 2022, 18(3): 111-117. DOI: 10.12131/20210100

Effect of salinity on growth of planktonic larvae of sea cucumber (Holothuria leucospilota)

More Information
  • Received Date: March 28, 2021
  • Revised Date: September 04, 2021
  • Accepted Date: September 15, 2021
  • Available Online: March 28, 2022
  • In order to improve the survival rate of larval breeding of Holothuria leucospilota and provide a theoretical basis for the development and utilization of wild resources of tropical sea cucumber, we investigated the effects of salinity on the growth, development and survival rate of planktonic larvae of H. leucospilota by measuring the growth and development of the planktonic larvae under different salinity conditions and analyzing the effects of body length, stomach width and survival rate of the planktonic larvae on its growth. Results demonstrate that the specific growth rates (SGR) of body length in the salinity groups of 33 and 36 were significantly higher than those in the other salinity groups (P<0.05), and there was no significant difference between the salinity group of 24 and 27, 33 and 36 (P>0.05). When the salinity was 30, the SGR of larval stomach width was significantly higher than that in the other salinity groups (24, 33 and 36 salinity groups, P<0.05). When the salinity was 27−30, the development and survival rate of stomach of planktonic larvae were the best, and its overall shape was stronger and clearer. Therefore, 27−30 is the optimal salnility for the development of plankton larvae of H. leucospilota.
  • [1]
    姚雪梅. 热带海参在我国南方沿海地区的增养殖前景[J]. 水产文摘, 2004(4): 2-5.
    [2]
    霍达. 玉足海参人工繁育及海藻糖酶基因的克隆与表达分析[D]. 北京: 中国科学院大学, 2018: 25-26.
    [3]
    GIANASI B L, HAMEL J, MERCIER A. Morphometric and behavioural changes in the early life stages of the sea cucumber Cucumaria frondosa[J]. Aquaculture, 2018, 490: 5-18. doi: 10.1016/j.aquaculture.2018.02.017
    [4]
    HUANG W, HUO D, YU Z, et al. Spawning, larval development and juvenile growth of the tropical sea cucumber Holothuria leucospilota[J]. Aquaculture, 2018, 488: 22-29. doi: 10.1016/j.aquaculture.2018.01.013
    [5]
    薛英楼, 高菲, 许强, 等. 黑海参 (Holothuria atra) 对环境沉积物的摄食选择及消化系统功能适应性研究[J]. 海洋与湖沼, 2019, 50(5): 1070-1079. doi: 10.11693/hyhz20190200033
    [6]
    DRUMM D J, LONERAGAN N R. Reproductive biology of Holothuria leucospilota in the Cook Islands and the implications of traditional fishing of gonads on the population[J]. New Zeal J Mar Freshw, 2005, 39(1): 141-156. doi: 10.1080/00288330.2005.9517297
    [7]
    WIBOWO J T, KELLERMANN M Y, VERSLUIS D, et al. Biotechnological potential of bacteria isolated from the sea cucumber Holothuria leucospilota and Stichopus vastus from lampung, Indonesia[J]. Mar Drug, 2019, 17(11): 635. doi: 10.3390/md17110635
    [8]
    MALAIWONG N, CHALORAK P, JATTUJAN P, et al. Anti-Parkinson activity of bioactive substances extracted from Holothuria leucospilota[J]. Biomed Pharmacother, 2019, 109: 1967-1977. doi: 10.1016/j.biopha.2018.11.063
    [9]
    CEESAY A, NOR SHAMSUDIN M, ALIYU-PAIKO M, et al. Extraction and characterization of organ components of the Malaysian sea cucumber Holothuria leucospilota yielded bioactives exhibiting diverse properties[J]. Biomed Res Int, 2019: 2640684. doi: 10.1155/2019/2640684
    [10]
    SROYRAYA M, KAEWPHALUG W, ANANTACHOKE N, et al. Saponins enriched in the epidermal layer of Holothuria leucospilota body wall[J]. Microsc Res Tech, 2018, 81(10): 1182-1190. doi: 10.1002/jemt.23115
    [11]
    FOROUTAN-RAD M, KHADEMVATAN S, SAKI J, et al. Holothuria Leucospilota extract induces apoptosis in Leishmania major promastigotes[J]. Iran J Parasitol, 2016, 11(3): 339-349.
    [12]
    GUO K, SU L, WANG Y, et al. Antioxidant and anti-aging effects of a sea cucumber protein hydrolyzate and bioinformatic characterization of its composing peptides[J]. Food Funct, 2020, 11(6): 5004-5016. doi: 10.1039/D0FO00560F
    [13]
    GHADIRI M, KAZEMI S, HEIDARI B, et al. Bioactivity of aqueous and organic extracts of sea cucumber Holothuria leucospilota (Brandt 1835) on pathogenic Candida and Streptococci[J]. Int Aquat Res, 2018, 10(1): 31-43. doi: 10.1007/s40071-017-0186-x
    [14]
    YUAN Y, LIU Q, ZHAO F, et al. Holothuria leucospilota polysaccharides ameliorate hyperlipidemia in high-fat diet-induced rats via short-chain fatty acids production and lipid metabolism regulation[J]. Int J Mol Sci, 2019, 20(19): 4738. doi: 10.3390/ijms20194738
    [15]
    YUAN Y, LI C, ZHENG Q, et al. Effect of simulated gastrointestinal digestion in vitro on the antioxidant activity, molecular weight and microstructure of polysaccharides from a tropical sea cucumber (Holothuria leucospilota)[J]. Food Hydrocolloid, 2019, 89: 735-741. doi: 10.1016/j.foodhyd.2018.11.040
    [16]
    ZHAO F, LIU Q, CAO J, et al. A sea cucumber (Holothuria leucospilota) polysaccharide improves the gut microbiome to alleviate the symptoms of type 2 diabetes mellitus in goto-kakizaki rats[J]. Food Chem Toxicol, 2020, 135: 110886. doi: 10.1016/j.fct.2019.110886
    [17]
    韩华, 易杨华, 张文, 等. 玉足海参中具有细胞毒活性的三萜皂苷成分研究[J]. 中国药学杂志, 2012, 47(15): 1194-1198.
    [18]
    杨蕊, 吴开畅, 于刚, 等. 养殖模式对方斑东风螺生长及主要环境因子的影响[J]. 水产科学, 2019, 38(5): 610-615.
    [19]
    ZAMORA L, YUAN X, CARTON A, et al. Role of deposit-feeding sea cucumbers in integrated multitrophic aquaculture: progress, problems, potential and future challenges[J]. Rev Aquac, 2018, 10(1): 57-74. doi: 10.1111/raq.12147
    [20]
    HAN Q, KEESING J K, LIU D. A review of sea cucumber aquaculture, ranching, and stock enhancement in China[J]. Rev Fish Sci Aquac, 2016, 24(4): 326-341. doi: 10.1080/23308249.2016.1193472
    [21]
    CHIEU H D, SUWANSA-ARD S, ABRAMOV T, et al. In vitro oocyte maturation by radial nerve extract and early development of the black sea cucumber (Holothuria leucospilota)[J]. Aquaculture, 2018, 495: 247-254. doi: 10.1016/j.aquaculture.2018.05.032
    [22]
    BAKER-MÉDARD M, OHL K N. Sea cucumber management strategies: challenges and opportunities in a developing country context[J]. Environ Conserv, 2019, 46(4): 267-277. doi: 10.1017/S0376892919000183
    [23]
    CONAND C. Tropical sea cucumber fisheries: changes during the last decade[J]. Mar Pollut Bull, 2018, 133: 590-594. doi: 10.1016/j.marpolbul.2018.05.014
    [24]
    LAGUERRE H, RAYMOND G, PLAN P, et al. First description of embryonic and larval development, juvenile growth of the black sea-cucumber Holothuria forskali (Echinodermata: Holothuroidea), a new species for aquaculture in the north-eastern Atlantic[J]. Aquaculture, 2020, 521: 734961. doi: 10.1016/j.aquaculture.2020.734961
    [25]
    GONZÁLEZ-WANGÜEMERT M, DOMÍNGUEZ-GODINO J A, CÁNOVAS F. The fast development of sea cucumber fisheries in the Mediterranean and NE Atlantic waters: from a new marine resource to its over-exploitation[J]. Ocean Coast Manag, 2018, 151: 165-177. doi: 10.1016/j.ocecoaman.2017.10.002
    [26]
    CHIEU H D, TURNER L, SMITH M K, et al. Aquaculture breeding enhancement: maturation and spawning in sea cucumbers using a recombinant relaxin-like gonad-stimulating peptide[J]. Front Genet, 2019, 10: 77. doi: 10.3389/fgene.2019.00077
    [27]
    CHENG C, WU F, REN C, et al. Aquaculture of the tropical sea cucumber, Stichopus monotuberculatus: induced spawning, detailed records of gonadal and embryonic development, and improvements in larval breeding by digestive enzyme supply in diet[J]. Aquaculture, 2021, 540: 736690. doi: 10.1016/j.aquaculture.2021.736690
    [28]
    MILITZ T A, LEINI E, DUY N D Q, et al. Successful large-scale hatchery culture of sandfish (Holothuria scabra) using micro-algae concentrates as a larval food source[J]. Aquac Rep, 2018, 9: 25-30.
    [29]
    ARSAD N A, OTHMAN R, SHALEH S R M, et al. Effects of physicochemical parameters on the reproductive pattern of sea cucumber Holothuria scabra in Sabah[J]. Songklanakarin J Sci Technol, 2020, 42(1): 109-116.
    [30]
    JU B, JIANG A, XING R, et al. Optimization of conditions for an integrated multi-trophic aquaculture system consisting of sea cucumber Apostichopus japonicus and ascidian Styela clava[J]. Aquac Int, 2017, 25(1): 265-286. doi: 10.1007/s10499-016-0027-8
    [31]
    TOLON T. Effect of salinity on growth and survival of the juvenile sea cucumbers Holothuria tubulosa (Gmelin, 1788) and Holothuria poli (Delle Chiaje, 1923)[J]. Fresenius Environ Bull, 2017, 26(6): 3930-3935.
    [32]
    YU Z, QI Z, HU C, et al. Effects of salinity on ingestion, oxygen consumption and ammonium excretion rates of the sea cucumber Holothuria leucospilota[J]. Aquac Res, 2013, 44(11): 1760-1767.
    [33]
    MAGCANTA M L M, SORNITO M B, ESPADERO A D A, et al. Growth, survival and behavior of early juvenile sandfish Holothuria scabra (Jaeger, 1883) in response to feed types and salinity levels under laboratory conditions[J]. Philipp J Sci, 2021, 150(5): 871-887.
    [34]
    WANG F, YANG H, GAO F, et al. Effects of acute temperature or salinity stress on the immune response in sea cucumber, Apostichopus japonicus[J]. Comp Biochem Physiol A, 2008, 151(4): 491-498. doi: 10.1016/j.cbpa.2008.06.024
    [35]
    MENG X, DONG Y, DONG S, et al. Mortality of the sea cucumber, Apostichopus japonicus Selenka, exposed to acute salinity decrease and related physiological responses: osmoregulation and heat shock protein expression[J]. Aquaculture, 2011, 316(1/2/3/4): 88-92.
    [36]
    DONG Y, DONG S, JI T. Effect of different thermal regimes on growth and physiological performance of the sea cucumber Apostichopus japonicus Selenka[J]. Aquaculture, 2008, 275(1/2/3/4): 329-334.
    [37]
    SHI W, LI Y, DONG Y, et al. The effect of ocean acidification on the enzyme activity of Apostichopus japonicus[J]. Fish Shellfish Immun, 2021, 108: 1-6. doi: 10.1016/j.fsi.2020.11.004
    [38]
    LI L, LI Q. Effects of stocking density, temperature, and salinity on larval survival and growth of the red race of the sea cucumber Apostichopus japonicus (Selenka)[J]. Aquac Int, 2010, 18(3): 447-460. doi: 10.1007/s10499-009-9256-4
    [39]
    SARI B M S, GIGIH S W, JHON H H, et al. Effect of salinity on survival, growth and immunity rate of juvenile sea cucumber (Holothuria scabra)[J]. Biotropia-Southeast Asian J Trop Biol, 2019, 26(3): 163-171.
    [40]
    DABBAGH A, SEDAGHAT M R, RAMESHI H, et al. Breeding and larval rearing of the sea cucumber Holothuria leucospilota Brandt (Holothuria vegabunda Selenka) from the northern Persian Gulf, Iran[J]. SPC Beche-de-mer Info Bull, 2011, 31: 35-38.
    [41]
    SOLIMAN T, YAMAZAKI Y, NIIYAMA H, et al. Spontaneous captive breeding and larval development in the green and red variants of the Japanese sea cucumber Apostichopus japonicus (Selenka 1867)[J]. Aquac Res, 2013, 44(5): 738-746. doi: 10.1111/j.1365-2109.2011.03078.x
    [42]
    PETERS-DIDIER J, SEWELL M A. The role of the hyaline spheres in sea cucumber metamorphosis: lipid storage via transport cells in the blastocoel[J]. EvoDevo, 2019, 10(1): 1-12. doi: 10.1186/s13227-018-0114-1
    [43]
    ZACARÍAS-SOTO M, OLVERA-NOVOA M A, PENSAMIENTO-VILLARAUZ S, et al. Spawning and larval development of the four-sided sea cucumber, Isostichopus badionotus (Selenka 1867), under controlled conditions[J]. J World Aquac Soc, 2013, 44(5): 694-705. doi: 10.1111/jwas.12061
    [44]
    RAMOFAFIA C, BYRNE M, BATTAGLENE S C. Development of three commercial sea cucumbers, Holothuria scabra, H. fuscogilva and Actinopyga mauritiana: larval structure and growth[J]. Mar Freshw Res, 2003, 54(5): 657-667. doi: 10.1071/MF02145
    [45]
    DUY N D Q, FRANCIS D S, SOUTHGATE P C. Development of hyaline spheres in late auriculariae of sandfish, Holothuria scabra: is it a reliable indicator of subsequent performance?[J]. Aquaculture, 2016, 465: 144-151. doi: 10.1016/j.aquaculture.2016.09.003
  • Related Articles

    [1]HU Xiaona, WU Xingbing, ZHU Yongjiu, CHEN Siqi, SHI Zechao, ZHANG Yuansong, WANG Long, LI Xiaoli, LI Xuemei. Effects of stocking density on growth performance and physiological and biochemical parameters of Pelteobagrus vachelli juvenile[J]. South China Fisheries Science, 2025, 21(3): 141-148. DOI: 10.12131/20240266
    [2]QIAN Zhenjia, XU Jincheng, LIU Huang, CUI Mingchao, ZHANG Chenglin. Effects of flow velocity on growth performance and physiological and biochemical indexes of large yellow croaker (Larimichthys crocea) in welfare aquaculture[J]. South China Fisheries Science, 2025, 21(3): 53-63. DOI: 10.12131/20250036
    [3]LI Chenghui, DONG Hongbiao, ZHENG Xiaoting, GUI Fukun, ZENG Xiangbing, MING Junchao, CHEN Fei, CHEN Jian, ZHANG Jiasong. Effects of Amomum villosum essential oil on growth, digestion, intestinal antioxidant capacity and serum biochemical indexes of juvenile tilapia (Oreochromis niloticus)[J]. South China Fisheries Science, 2023, 19(6): 51-59. DOI: 10.12131/20230022
    [4]CHEN Li, XU Jiaxin, LI Liujia, ZHAO Chengfa, LONG Xiaowen. Effects of dietary fishmeal replacement by Periplaneta americana meal on biochemical indexes, disease resistance and metabolomics of juvenile Oncorhynchus mykiss[J]. South China Fisheries Science, 2023, 19(4): 86-97. DOI: 10.12131/20220208
    [5]ZENG Xiangbing, DONG Hongbiao, WEI Zhengkun, DUAN Yafei, CHEN Jian, ZHANG Hui, SUN Caiyun, XU Xiaodong, ZHANG Jiasong. Effects of polysaccharide from Endothelium corneum gigeriae galli on growth, digestive, intestinal antioxidant capacity and serum biochemical indices of Lates calcarifer[J]. South China Fisheries Science, 2021, 17(4): 49-57. DOI: 10.12131/20210028
    [6]TAN Lianjie, LIN Heizhao, HUANG Zhong, XUN Pengwei, HUANG Qianqian, ZHOU Chuanpeng, HUANG Xiaolin, YU Wei. Effect of dietary angelica polysaccharide (AP) on growth performance, antioxidant capacity, serum immune and serum biochemical indices of juvenile golden pompano (Trachinotus ovatus)[J]. South China Fisheries Science, 2018, 14(4): 72-79. DOI: 10.3969/j.issn.2095-0780.2018.04.009
    [7]CHEN Weizhou, ZHONG Zhihai, JIN Yulin, HUANG Zhongjian. Effects of light intensity, temperature and salinity on growth and biochemical constituents of Hypnea cervicornis[J]. South China Fisheries Science, 2014, 10(2): 48-53. DOI: 10.3969/j.issn.2095-0780.2014.02.007
    [8]WANG Guoxia, LIU Qunfang, HUANG Wenqing, LIN Jianan, HUANG Yanhua, XU Liming. Effects of complete enzyme preparation on growth performance, serum biochemical and immune indices of juvenile yellow catfish (Peltobagrus fulvidraco)[J]. South China Fisheries Science, 2013, 9(6): 84-89. DOI: 10.3969/j.issn.2095-0780.2013.06.014
    [9]HUANG Zhong, LIN Heizhao, NIU Jin, LV Guomin, CHEN Xu, CHEN Mingqiang. Effects of dietary inositol on growth, feed utilization and blood biochemical index of juvenile pompano (Trachinotus ovatus)[J]. South China Fisheries Science, 2011, 7(3): 39-44. DOI: 10.3969/j.issn.2095-0780.2011.03.007
    [10]YUAN Fenghua, LIN Heizhe, LI Zhuojia, LU Xin, YANG Qibin. Effects of dietary Bacillus licheniformis on blood physiological-biochemical indices in cultured Lates calarifer[J]. South China Fisheries Science, 2009, 5(2): 45-50. DOI: 10.3969/j.issn.1673-2227.2009.02.008

Catalog

    Recommendations
    Comparative study on growth, hepatopancreas and gill histological structure, and enzyme activities oflitopenaeus vannameiunder so42−/cl−stress in low saline water
    HE Zheng et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Intestinal tissue structure, digestive enzymes, antioxidant enzymes and intestinal flora diversity between second filial generation and wild population ofbrachymystax tsinlingensisli, 1966
    SONG Rongqun et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Early pigmented cell development and body color change ofplatax teira
    YU Chuxia et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Effects of lh crude oil and no.0 diesel oil emulsion on hepatopancreatic antioxidant enzyme activity and related functional gene expression inlitopenaeus vannamei
    SHEN Chuyan et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Titanium dioxide and zinc oxide nanoparticles in sunscreen: potential impact on cytokine expression in human skin pre- and post-uvb exposure
    Shaina Ailawadi et al., ARCHIVES OF MICROBIOLOGY & IMMUNOLOGY, 2023
    Acute ammonia nitrogen stress on antioxidant capacity and non-specific immune of rainbow trout (oncorhynchusmykiss) in an alkaline environment
    FU Xu-Juan et al., ACTA HYDROBIOLOGICA SINICA, 2025
    The impact of uv light on synthetic photochemistry and photocatalysis
    Goti, Giulio et al., NATURE CHEMISTRY, 2024
    Effect of thickness on structural, optical, and optoelectrical properties of sprayed cuinsns4 thin films as a new absorber layer for solar cells
    El Radaf, I. M., PHYSICA B-CONDENSED MATTER, 2023
    Chemical characterization of extracts of leaves of kadsua coccinea (lem.) a. c. sm. by uhplc-q-exactive orbitrap mass spectrometry and assessment of their antioxidant and anti-inflammatory activities
    BIOMEDICINE & PHARMACOTHERAPY
    Nocturnin promotes nadh and atp production for juvenile hormone biosynthesis in adult insects
    PEST MANAGEMENT SCIENCE
    Powered by
    Article views (739) PDF downloads (50) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return