Citation: | CHEN Li, XU Jiaxin, LI Liujia, ZHAO Chengfa, LONG Xiaowen. Effects of dietary fishmeal replacement by Periplaneta americana meal on biochemical indexes, disease resistance and metabolomics of juvenile Oncorhynchus mykiss[J]. South China Fisheries Science, 2023, 19(4): 86-97. DOI: 10.12131/20220208 |
[1] |
农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2022中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2022: 25.
|
[2] |
BONDAD-REANTASO M G, SUBASINGHE R P, ARTHUR J R, et al. Disease and health management in Asian aquaculture[J]. Vet Parasitol, 2005, 132(3): 249-272.
|
[3] |
ELSHESHTAWY A, YEHIA N, ELKEMARY M, et al. Direct detection of unamplified Aeromonas hydrophila DNA in clinical fish samples using gold nanoparticle probe-based assay[J]. Aquaculture, 2019, 500: 451-457. doi: 10.1016/j.aquaculture.2018.10.046
|
[4] |
SONG X H, ZHAO J, BO Y X, et al. Aeromonas hydrophila induces intestinal inflammation in grass carp (Ctenopharyngodon idella): an experimental model[J]. Aquaculture, 2014, 434: 171-178. doi: 10.1016/j.aquaculture.2014.08.015
|
[5] |
OROZOVA P, SIRAKOV I, AUSTIN D A, et al. Recovery of Bacillus mycoides, B. pseudomycoides and Aeromonas hydrophila from common carp (Cyprinus carpio) and rainbow trout (Oncorhynchus mykiss) with gill disease[J]. J Fish Dis, 2018, 41(1): 125-129. doi: 10.1111/jfd.12686
|
[6] |
沈锦玉. 嗜水气单胞菌的研究进展[J]. 浙江海洋学院学报(自然科学版), 2008(1): 78-86.
|
[7] |
张羡宇, 马鹏飞, 李娜, 等. 抗生素及其抗性基因在水产养殖环境中的污染与消除技术研究进展[J]. 水产学杂志, 2022, 35(2): 92-101.
|
[8] |
李丹怡, 王许诺, 张广桔, 等. 水产养殖环境中抗生素抗性基因(ARGs)研究进展[J]. 南方水产科学, 2022, 18(5): 166-176.
|
[9] |
陈思聪. 美洲大蠊几丁质分离和壳聚糖制备研究[D]. 保定: 河北大学, 2020: 6-7.
|
[10] |
高阳阳, 耿福能, 陈思敏, 等. 美洲大蠊的有效成分及相关药理学研究进展[J]. 中国实验方剂学杂志, 2021, 27(4): 240-250.
|
[11] |
周琼, 吴珍泉, 李忠荣, 等. 美洲大蠊的营养价值与饲用安全性的分析[J]. 福建农业学报, 2007, 22(3): 276-278.
|
[12] |
林喆, 李全学, 徐静, 等. 美洲大蠊化学成分和生物活性研究进展[J]. 中草药, 2017, 48(17): 3645-3649. doi: 10.7501/j.issn.0253-2670.2017.17.030
|
[13] |
吕娜, 李广志, 王钧篪, 等. 美洲大蠊化学成分及生物活性的研究进展[J]. 现代生物医学进展, 2017, 17(16): 3184-3190.
|
[14] |
ZHANG Y, SU J Y, LUO L F, et al. Effects of water extracts of American cockroach (Periplaneta americana) on the growth and physiological and biochemical indices of genetically improved farmed tilapia (Oreochromis niloticus)[J]. Aquac Res, 2022, 53(11): 3939-3948. doi: 10.1111/are.15897
|
[15] |
高允, 梁柳春, 王瑞, 等. 美洲大蠊化学成分的研究[J]. 中成药, 2018, 40(2): 375-378.
|
[16] |
LONG X W, SUN Y F, WADE N M, et al. Key metabolic and enzymatic adaptations underlie the benefits of formulated diets in the adult female Chinese mitten crab Eriocheir sinensis[J]. Aquac Res, 2020, 51: 5125-5140. doi: 10.1111/are.14851
|
[17] |
康玉军. 虹鳟肝脏响应高温胁迫的蛋白质组学与代谢组学研究[D]. 兰州: 甘肃农业大学, 2020: 24-26.
|
[18] |
ANDREA A C, YOUNG T. Showcasing metabolomic applications in aquaculture: a review[J]. Rev Aquac, 2018, 10(1): 135-152. doi: 10.1111/raq.12152
|
[19] |
PATTI G J, YANES O, SIUZDAK G, et al. Metabolomics: the apogee of the omics trilogy[J]. Nat Rev Mol Cell Bio, 2012, 13(4): 263-269. doi: 10.1038/nrm3314
|
[20] |
耿柠波, 张海军, 王菲迪, 等. 代谢组学技术在环境毒理学研究中的应用[J]. 生态毒理学报, 2016, 11(3): 26-35.
|
[21] |
LONG X W, LIU Y T, LI Y Q, et al. Effects of dietary American cockroach Periplaneta americana meal inclusion on the growth performance, antioxidant capacity, and immunity of juvenile rainbow trout Oncorhynchus mykiss[J]. Aquac Nutr, 2022: 8359405.
|
[22] |
DENG J M, KANG B, TAO L L, et al. Effects of dietary cholesterol on antioxidant capacity, non-specific immune response, and resistance to Aeromonas hydrophila in rainbow trout (Oncorhynchus mykiss) fed soybean meal-based diets[J]. Fish Shellfish Immunol, 2013, 34(1): 324-331. doi: 10.1016/j.fsi.2012.11.008
|
[23] |
FOLCH J, LEES M, SLOANE-STANLEY G H. A simple method for the isolation and purification of total lipides from animal tissues[J]. J Biol Chem, 1957, 226(1): 497-509. doi: 10.1016/S0021-9258(18)64849-5
|
[24] |
LOCK E J, ARSIWALLA T, WAAGBØ R, et al. Insect larvae meal as an alternative source of nutrients in the diet of Atlantic salmon (Salmo salar) post-smolt[J]. Aquacult Nutr, 2016, 22: 1202-1213. doi: 10.1111/anu.12343
|
[25] |
RENNA M, SCHIAVONE A, GAI F, et al. Evaluation of the suitability of a partially defatted black soldier fly (Hermetia illucens L.) larvae meal as ingredient for rainbow trout (Oncorhynchus mykiss Walbaum) diets[J]. J Anim Sci Biotechnol, 2017, 8: 57. doi: 10.1186/s40104-017-0191-3
|
[26] |
JEONG S M, KHOSRAVI S, MAULIASARI I R, et al. Dietary inclusion of mealworm (Tenebrio molitor) meal as an alternative protein source in practical diets for rainbow trout (Oncorhynchus mykiss) fry[J]. Can J Fish Aquat Sci, 2020, 23(1): 12. doi: 10.1186/s41240-020-00158-7
|
[27] |
SEALEY W M, GAYLORD T G, BARROWS F T, et al. Sensory analysis of rainbow trout, Oncorhynchus mykiss, fed enriched black soldier fly prepupae, Hermetia illucens[J]. J World Aquac Soc, 2011, 42(1): 34-45. doi: 10.1111/j.1749-7345.2010.00441.x
|
[28] |
RAWSKI M, MAZURKIEWICZ J, KIERONCZYK B, et al. Black soldier fly full-fat larvae meal as an alternative to fish meal and fish oil in Siberian aturgeon nutrition: the effects on physical properties of the feed, animal growth performance, and feed acceptance and utilization[J]. Animals-Basel, 2020, 10(11): 2119.
|
[29] |
张义. 美洲大蠊营养价值分析及其水提取物在水产饲料中的应用初探[D]. 佛山: 佛山科学技术学院, 2020: 25-30.
|
[30] |
刘飞, 刘旭昊, 王凡, 等. 饲料红枣提取物添加对虹鳟幼鱼生长和抗氧化能力的影响[J]. 中国饲料, 2020(9): 98-103.
|
[31] |
许聪, 王际英, 郝甜甜, 等. 发酵鱼溶浆替代鱼粉对大菱鲆幼鱼生长、抗氧化能力、蛋白质代谢及相关基因表达的影响[J]. 渔业科学进展, 2022, 43: 1-13.
|
[32] |
佘韶峰, 赵天章, 李慧英. 美洲大蠊虫粉对肉鸡生长性能、免疫功能、肌肉抗氧化能力及肉品质的影响[J]. 动物营养学报, 2021, 33(12): 6813-6823.
|
[33] |
隋世燕, 葛亚男, 徐取尉, 等. 美洲大蠊醇提物对大鼠抗氧化应激的影响[J]. 四川动物, 2017, 36(2): 198-202.
|
[34] |
罗智文, 董志祥, 林连兵, 等. 鱼类重要免疫器官抗菌机制的研究进展[J]. 水产科学, 2021, 40(4): 624-634.
|
[35] |
BERGLJÓT M. Innate immunity of fish (overview)[J]. Fish Shellfish Immunol, 2006, 20(2): 137-151. doi: 10.1016/j.fsi.2004.09.006
|
[36] |
刘益丽, 邓霄禹, 江明锋. 溶菌酶抑菌活性及检测方法研究进展[J]. 中国畜牧兽医, 2013, 40(8): 189-194.
|
[37] |
孙金辉, 王庆奎, 陈成勋, 等. 嗜水气单胞菌灭活疫苗对虹鳟免疫力和抗病力的影响[J]. 淡水渔业, 2013, 43(1): 44-49.
|
[38] |
陆梦莹, 苏冒亮, 张俊彬. 盐度变化对金钱鱼感染嗜水气单胞菌后血清及肾脏免疫状态的影响[J]. 热带海洋学报, 2021, 40(3): 114-123.
|
[39] |
欧红利, 常旭, 王聪, 等. 美洲大蠊多肽对L1210荷瘤小鼠抗肿瘤免疫的初步研究[J]. 中国药学杂志, 2018, 53(5): 353-358.
|
[40] |
HENRY M A, GASCO L, CHATZIFOTIS S, et al. Does dietary insect meal affect the fish immune system? The case of mealworm, Tenebrio molitor on European sea bass, Dicentrarchus labrax[J]. Dev Comp Immunol, 2018, 81: 204-209. doi: 10.1016/j.dci.2017.12.002
|
[41] |
IDO A, IWAI T, MIZUSHIGE T, et al. Dietary effects of housefly (Musca domestica) (diptera: muscidae) pupae on the growth performance and the resistance against bacterial pathogen in red sea bream (Pagrus major)(perciformes: sparidae)[J]. Appl Entomol Zool, 2015, 50: 213-221. doi: 10.1007/s13355-015-0325-z
|
[42] |
明建华, 叶金云, 张易祥, 等. 蝇蛆粉和L-肉碱对青鱼生长、免疫与抗氧化指标及抗病力的影响[J]. 中国粮油学报, 2013, 28(2): 80-86.
|
[43] |
施米丽, 郭美仙, 金家瑞, 等. 美洲大蠊提取物CⅡ-3纳米粒对免疫力低下小鼠的免疫调节作用[J]. 动物医学进展, 2019, 40(2): 68-73. doi: 10.16437/j.cnki.1007-5038.2019.02.013
|
[44] |
FOKINA N N, BAKHMET I N, SHKLYAREVICH G A, et al. Effect of seawater desalination and oil pollution on the lipid composition of blue mussels Mytilus edulis L. from the White Sea[J]. Ecotox Environ Safe, 2014(110): 103-109.
|
[45] |
KERTYS M, GRENDAR M, KOSUTOVA P, et al. Plasma based targeted metabolomic analysis reveals alterations of phosphatidylcholines and oxidative stress markers in guinea pig model of allergic asthma[J]. BBA-Mol Basis Dis, 2020, 1866(1): 165572. doi: 10.1016/j.bbadis.2019.165572
|
[46] |
卫舒帆. 美洲大蠊提取物、溶血磷脂酰胆碱衍生物活性及制剂研究[D]. 昆明: 云南中医药大学, 2021: 6-10.
|
[47] |
SCHLARMANN P, IKEDA A, FUNATO K. Membrane contact sites in yeast: control hubs of sphingolipid homeostasis[J]. Membranes-Basel, 2021, 11(12): 971. doi: 10.3390/membranes11120971
|
[48] |
侯乃鹏, 王煜, 陶聪, 等. 鞘磷脂对小鼠肌卫星细胞C2C12成肌分化的影响[J]. 中国畜牧兽医, 2021, 48(11): 4074-4083.
|