Citation: | ZHANG Ruiqi, ZHAO Jinliang, HAO Yueyue, SONG Yindu. Postembryonic development of cranial lateral line system in Siniperca chuatsi[J]. South China Fisheries Science, 2020, 16(6): 57-66. DOI: 10.12131/20200067 |
We studied the process and structure of postembryonic development of the lateral cranial line system of mandarinfish (Siniperca chuatsi) by means of neuromast fluorescence staining and scanning electron microscopy. The results show that in the postembryonic development of the craniolateral system of S. chuatsi, precursor canal neuromasts appeared at 4 dpf, and their number tended to be stable at 30 dpf. The surface neuromasts appeared at 16 dpf, and then distributed in a large number at the top of the skull. The surface of the anterior operculum distributed in a small amount, and the mandible was not found. The establishment of craniolateral canal began at 19−22 dpf, and finished at 37 dpf. The lateral line of the cranial canal was mainly compsed of upper orbital line, lower orbital line, mandibular line and anterior operculum line. Besides, the posterior ear line connected the upper and lower orbital lines with the anterior operculum line. The temporal line started from the dorsal end of the anterior operculum line and the lateral line of the upper orbital line extended to the top of the cranium. The development speed of the neuromasts of the dorsal canal was faster than that of the ventral canal, and the distribution of the surface neuromasts was relatively concentrated. The results show that the lateral line system of S. chuatsi, which is a simple branch type, is an important part of its lateral line system. The relatively dense system of the top of skull and the relatively concentrated surface neuromasts constitute the perfect lateral line system structure of S. chuatsi.
[1] |
MONTGOMERY J, BLECKMANN H, COOMBS S. Sensory ecology and neuroethology of the lateral line[M]. New York: Springer, 2014: 121-145.
|
[2] |
BUTLER J M, MARUSKA K P. The mechanosensory lateral line is used to assess opponents and mediate aggressive behaviors during territorial interactions in an African cichlid fish[J]. J Exp Biol, 2015, 218(20): 3284-3294. doi: 10.1242/jeb.125948
|
[3] |
DOW E, JACOBO A, HOSSAIN S, et al. Connectomics of the zebrafish's lateral-line neuromast reveals wiring and miswiring in a simple microcircuit[J]. eLife, 2018, 7: e33988. doi: 10.7554/eLife.33988
|
[4] |
BROWN E E A, MEGELA S A, FINE M L. Variability of rheotaxis behaviors in larval bullfrogs highlights species diversity in lateral line function[J]. PLoS One, 2016, 11(11): e0166989. doi: 10.1371/journal.pone.0166989
|
[5] |
WEBB J F. Morphological diversity, development, and evolution of the mechanosensory lateral line system[M]. New York: Springer, 2014: 17-72.
|
[6] |
DENTON E J, GREY J A. Some observations on the forces acting on neuroinasts in fish lateral line canals[M]. New York: Springer, 1989: 229-246.
|
[7] |
MÜNZ H. Functional organization of the lateral line periphery[M]. New York: Springer, 1989: 285-297.
|
[8] |
MARTA L O, GEMA V, YAN X, et al. Hair cell identity establishes labeled lines of directional mechanosensation[J]. PLoS Biol, 2018, 16(7): e2004404. doi: 10.1371/journal.pbio.2004404
|
[9] |
PICHLER P, LAGNADO L. Motor behavior selectively inhibits hair cells activated by forward motion in the lateral line of zebrafish[J]. Curr Biol, 2020, 30(1): 150-157. doi: 10.1016/j.cub.2019.11.020
|
[10] |
MARSHALL N J. Vision and sensory physiology the lateral line systems of three deep-sea fish[J]. J Fish Biol, 1996, 49(sA): 239-258. doi: 10.1111/j.1095-8649.1996.tb06079.x
|
[11] |
GIBBS M A. Lateral line receptors: where do they come from developmentally and where is our research going?[J]. Brain Behav Evolut, 2004, 64(3): 163-181. doi: 10.1159/000079745
|
[12] |
YOUNG A, KOCHENKOV V, MCINTYRE J K, et al. Urban stormwater runoff negatively impacts lateral line development in larval zebrafish and salmon embryos[J]. Sci Rep, 2018, 8(1): 2830-2844. doi: 10.1038/s41598-018-21209-z
|
[13] |
LIANG X F, OKU H, OGATA H Y, et al. Weaning Chinese perch Siniperca chuatsi (Basilewsky) onto artificial diets based upon its specific sensory modality in feeding[J]. Aquacult Res, 2015, 32(s1): 76-82.
|
[14] |
孙海林, 孙成飞, 董浚键, 等. 翘嘴鳜转录组测序及SSR新标记的开发与应用[J]. 基因组学与应用生物学, 2019(10): 4413-4421.
|
[15] |
魏磊, 朱书琴, 刘伟, 等. 鳜回交子代与亲本子代间体型和体斑特征比较[J]. 南方水产科学, 2020, 16(2): 1-7. doi: 10.12131/20190219
|
[16] |
刘伟, 赵金良, 魏磊, 等. 鳜早期色素发育和色彩图案的形成[J]. 动物学杂志, 2019(2): 236-244.
|
[17] |
梁旭方. 鳜鱼视觉特性及其对捕食习性适应的研究: Ⅱ. 视网膜结构特性[J]. 水生生物学报, 1994, 18(4): 376-377. doi: 10.3321/j.issn:1000-3207.1994.04.009
|
[18] |
梁旭方. 鳜鱼视觉特性及其对捕食习性适应的研究: Ⅲ. 视觉对猎物运动和形状的反应[J]. 水生生物学报, 1995, 19(1): 70-75.
|
[19] |
郝月月, 赵金良, 张瑞祺, 等. 鳜早期味蕾发育的组织学特征[J]. 动物学杂志, 2018, 53(5): 83-90.
|
[20] |
梁旭方. 鳜捕食行为的研究[J]. 海洋与湖沼, 1995, 26(5): 119-125.
|
[21] |
魏开建, 张海明. 鳜鱼视网膜发育的组织学研究[J]. 华中农业大学学报, 1996, 15(3): 263-269.
|
[22] |
ZHANG R Q, ZHAO J L, ZHAO Y, et al. Retinal development in mandarinfish Siniperca chuatsi and morphological analysis of the photoreceptor layer[J]. J Fish Biol, 2019, 95(3): 903-917.
|
[23] |
梁旭方. 鳜侧线管结构和行为反应特性及其对捕食习性的适应[J]. 海洋与湖沼, 1996, 27(5): 457-462. doi: 10.3321/j.issn:0029-814X.1996.05.001
|
[24] |
李家乐. 池塘养鱼学[M]. 北京: 中国农业出版社, 2010: 93-170.
|
[25] |
田文斐, 钟俊生, 钱叶洲. 鳜仔鱼视网膜及口腔齿的发育对摄食的适应[J]. 上海海洋大学学报, 2012, 21(2): 190-198.
|
[26] |
WEBB J F, SHIREY J E. Postembryonic development of the cranial lateral line canals and neuromasts in zebrafish[J]. Dev Dynam, 2003, 228(3): 370-385. doi: 10.1002/dvdy.10385
|
[27] |
WEBB J F. Gross morphology and evolution of the mechanosensory lateral line system in teleost fishes[J]. Brain Behav Evolut, 1989, 33(1): 34-53. doi: 10.1159/000115896
|
[28] |
WEBB J F. Developmental constraints and evolution of the lateral line system in teleost fishes [M]. New York: Springer, 1989: 79-97.
|
[29] |
WEBB J F. Neuromast morphology and lateral line trunk canal ontogeny in two species of cichlids: an SEM study[J]. J Morphol, 1989, 202(1): 53-68. doi: 10.1002/jmor.1052020105
|
[30] |
SATO M, ASAOKA R, NAKAE M, et al. The lateral line system and its innervation in Lateolabrax japonicus (Percoideiincertae sedis) and two apogonids (Apogonidae), with special reference to superficial neuromasts (Teleostei: Percomorpha)[J]. Ichthyol Res, 2017, 64(3): 308-330. doi: 10.1007/s10228-016-0568-x
|
[31] |
SATO M, NAKAE M, SASAKI K. Convergent evolution of the lateral line system in Apogonidae (Teleostei: Percomorpha) determined from innervation[J]. J Morphol, 2019, 280(1): 1026-1045.
|
[32] |
SCHWALBE M A B, BASSETT D K, WEBB J F. Feeding in the dark: lateral-line-mediated prey detection in the peacock cichlid Aulonocara stuartgranti[J]. J Exp Biol, 2012, 215(12): 2060-2071. doi: 10.1242/jeb.065920
|
[33] |
CARPENTER K E, BERRA T M, JR J M H. Swim bladder and posterior lateral line nerve of the nurseryfish, Kurtus gulliveri (Perciformes: Kurtidae)[J]. J Morphol, 2004, 260(2): 193-200. doi: 10.1002/jmor.10184
|
[34] |
MOTOMURA H, IWATSUKI Y. Review of Polydactylus species (Perciformes: Polynemidae) characterized by a large black anterior lateral line spot, with descriptions of two new species[J]. Ichthyol Res, 2001, 48(4): 337-354. doi: 10.1007/s10228-001-8157-y
|
[35] |
WEBB J F. Laterophysic connection: a unique link between the swimbladder and the lateral line system in Chaetodon (Perciformes: Chaetodontidae)[J]. Copeia, 1998(4): 1032-1036.
|
[36] |
BECKER E A, BIRD N C, WEBB J F. Post-embryonic development of canal and superficial neuromasts and the generation of two cranial lateral line phenotypes[J]. J Morphol, 2016, 227(10): 1273-1291.
|
[37] |
WINDSOR S P, MCHENRY M J. The influence of viscous hydrodynamics on the fish lateral-line system[J]. Integr Comp Biol, 2009, 49(6): 691-701. doi: 10.1093/icb/icp084
|
[38] |
YOSHIZAWA M, JEFFERY W R, van NETTEN S M, et al. The sensitivity of lateral line receptors and their role in the behavior of Mexican blind cavefish (Astyanax mexicanus)[J]. J Exp Biol, 2014, 217(6): 886-895. doi: 10.1242/jeb.094599
|