ZHANG Ruiqi, ZHAO Jinliang, HAO Yueyue, SONG Yindu. Postembryonic development of cranial lateral line system in Siniperca chuatsi[J]. South China Fisheries Science, 2020, 16(6): 57-66. DOI: 10.12131/20200067
Citation: ZHANG Ruiqi, ZHAO Jinliang, HAO Yueyue, SONG Yindu. Postembryonic development of cranial lateral line system in Siniperca chuatsi[J]. South China Fisheries Science, 2020, 16(6): 57-66. DOI: 10.12131/20200067

Postembryonic development of cranial lateral line system in Siniperca chuatsi

More Information
  • Received Date: April 06, 2020
  • Revised Date: May 18, 2020
  • Accepted Date: July 02, 2020
  • Available Online: September 28, 2020
  • We studied the process and structure of postembryonic development of the lateral cranial line system of mandarinfish (Siniperca chuatsi) by means of neuromast fluorescence staining and scanning electron microscopy. The results show that in the postembryonic development of the craniolateral system of S. chuatsi, precursor canal neuromasts appeared at 4 dpf, and their number tended to be stable at 30 dpf. The surface neuromasts appeared at 16 dpf, and then distributed in a large number at the top of the skull. The surface of the anterior operculum distributed in a small amount, and the mandible was not found. The establishment of craniolateral canal began at 19−22 dpf, and finished at 37 dpf. The lateral line of the cranial canal was mainly compsed of upper orbital line, lower orbital line, mandibular line and anterior operculum line. Besides, the posterior ear line connected the upper and lower orbital lines with the anterior operculum line. The temporal line started from the dorsal end of the anterior operculum line and the lateral line of the upper orbital line extended to the top of the cranium. The development speed of the neuromasts of the dorsal canal was faster than that of the ventral canal, and the distribution of the surface neuromasts was relatively concentrated. The results show that the lateral line system of S. chuatsi, which is a simple branch type, is an important part of its lateral line system. The relatively dense system of the top of skull and the relatively concentrated surface neuromasts constitute the perfect lateral line system structure of S. chuatsi.

  • [1]
    MONTGOMERY J, BLECKMANN H, COOMBS S. Sensory ecology and neuroethology of the lateral line[M]. New York: Springer, 2014: 121-145.
    [2]
    BUTLER J M, MARUSKA K P. The mechanosensory lateral line is used to assess opponents and mediate aggressive behaviors during territorial interactions in an African cichlid fish[J]. J Exp Biol, 2015, 218(20): 3284-3294. doi: 10.1242/jeb.125948
    [3]
    DOW E, JACOBO A, HOSSAIN S, et al. Connectomics of the zebrafish's lateral-line neuromast reveals wiring and miswiring in a simple microcircuit[J]. eLife, 2018, 7: e33988. doi: 10.7554/eLife.33988
    [4]
    BROWN E E A, MEGELA S A, FINE M L. Variability of rheotaxis behaviors in larval bullfrogs highlights species diversity in lateral line function[J]. PLoS One, 2016, 11(11): e0166989. doi: 10.1371/journal.pone.0166989
    [5]
    WEBB J F. Morphological diversity, development, and evolution of the mechanosensory lateral line system[M]. New York: Springer, 2014: 17-72.
    [6]
    DENTON E J, GREY J A. Some observations on the forces acting on neuroinasts in fish lateral line canals[M]. New York: Springer, 1989: 229-246.
    [7]
    MÜNZ H. Functional organization of the lateral line periphery[M]. New York: Springer, 1989: 285-297.
    [8]
    MARTA L O, GEMA V, YAN X, et al. Hair cell identity establishes labeled lines of directional mechanosensation[J]. PLoS Biol, 2018, 16(7): e2004404. doi: 10.1371/journal.pbio.2004404
    [9]
    PICHLER P, LAGNADO L. Motor behavior selectively inhibits hair cells activated by forward motion in the lateral line of zebrafish[J]. Curr Biol, 2020, 30(1): 150-157. doi: 10.1016/j.cub.2019.11.020
    [10]
    MARSHALL N J. Vision and sensory physiology the lateral line systems of three deep-sea fish[J]. J Fish Biol, 1996, 49(sA): 239-258. doi: 10.1111/j.1095-8649.1996.tb06079.x
    [11]
    GIBBS M A. Lateral line receptors: where do they come from developmentally and where is our research going?[J]. Brain Behav Evolut, 2004, 64(3): 163-181. doi: 10.1159/000079745
    [12]
    YOUNG A, KOCHENKOV V, MCINTYRE J K, et al. Urban stormwater runoff negatively impacts lateral line development in larval zebrafish and salmon embryos[J]. Sci Rep, 2018, 8(1): 2830-2844. doi: 10.1038/s41598-018-21209-z
    [13]
    LIANG X F, OKU H, OGATA H Y, et al. Weaning Chinese perch Siniperca chuatsi (Basilewsky) onto artificial diets based upon its specific sensory modality in feeding[J]. Aquacult Res, 2015, 32(s1): 76-82.
    [14]
    孙海林, 孙成飞, 董浚键, 等. 翘嘴鳜转录组测序及SSR新标记的开发与应用[J]. 基因组学与应用生物学, 2019(10): 4413-4421.
    [15]
    魏磊, 朱书琴, 刘伟, 等. 鳜回交子代与亲本子代间体型和体斑特征比较[J]. 南方水产科学, 2020, 16(2): 1-7. doi: 10.12131/20190219
    [16]
    刘伟, 赵金良, 魏磊, 等. 鳜早期色素发育和色彩图案的形成[J]. 动物学杂志, 2019(2): 236-244.
    [17]
    梁旭方. 鳜鱼视觉特性及其对捕食习性适应的研究: Ⅱ. 视网膜结构特性[J]. 水生生物学报, 1994, 18(4): 376-377. doi: 10.3321/j.issn:1000-3207.1994.04.009
    [18]
    梁旭方. 鳜鱼视觉特性及其对捕食习性适应的研究: Ⅲ. 视觉对猎物运动和形状的反应[J]. 水生生物学报, 1995, 19(1): 70-75.
    [19]
    郝月月, 赵金良, 张瑞祺, 等. 鳜早期味蕾发育的组织学特征[J]. 动物学杂志, 2018, 53(5): 83-90.
    [20]
    梁旭方. 鳜捕食行为的研究[J]. 海洋与湖沼, 1995, 26(5): 119-125.
    [21]
    魏开建, 张海明. 鳜鱼视网膜发育的组织学研究[J]. 华中农业大学学报, 1996, 15(3): 263-269.
    [22]
    ZHANG R Q, ZHAO J L, ZHAO Y, et al. Retinal development in mandarinfish Siniperca chuatsi and morphological analysis of the photoreceptor layer[J]. J Fish Biol, 2019, 95(3): 903-917.
    [23]
    梁旭方. 鳜侧线管结构和行为反应特性及其对捕食习性的适应[J]. 海洋与湖沼, 1996, 27(5): 457-462. doi: 10.3321/j.issn:0029-814X.1996.05.001
    [24]
    李家乐. 池塘养鱼学[M]. 北京: 中国农业出版社, 2010: 93-170.
    [25]
    田文斐, 钟俊生, 钱叶洲. 鳜仔鱼视网膜及口腔齿的发育对摄食的适应[J]. 上海海洋大学学报, 2012, 21(2): 190-198.
    [26]
    WEBB J F, SHIREY J E. Postembryonic development of the cranial lateral line canals and neuromasts in zebrafish[J]. Dev Dynam, 2003, 228(3): 370-385. doi: 10.1002/dvdy.10385
    [27]
    WEBB J F. Gross morphology and evolution of the mechanosensory lateral line system in teleost fishes[J]. Brain Behav Evolut, 1989, 33(1): 34-53. doi: 10.1159/000115896
    [28]
    WEBB J F. Developmental constraints and evolution of the lateral line system in teleost fishes [M]. New York: Springer, 1989: 79-97.
    [29]
    WEBB J F. Neuromast morphology and lateral line trunk canal ontogeny in two species of cichlids: an SEM study[J]. J Morphol, 1989, 202(1): 53-68. doi: 10.1002/jmor.1052020105
    [30]
    SATO M, ASAOKA R, NAKAE M, et al. The lateral line system and its innervation in Lateolabrax japonicus (Percoideiincertae sedis) and two apogonids (Apogonidae), with special reference to superficial neuromasts (Teleostei: Percomorpha)[J]. Ichthyol Res, 2017, 64(3): 308-330. doi: 10.1007/s10228-016-0568-x
    [31]
    SATO M, NAKAE M, SASAKI K. Convergent evolution of the lateral line system in Apogonidae (Teleostei: Percomorpha) determined from innervation[J]. J Morphol, 2019, 280(1): 1026-1045.
    [32]
    SCHWALBE M A B, BASSETT D K, WEBB J F. Feeding in the dark: lateral-line-mediated prey detection in the peacock cichlid Aulonocara stuartgranti[J]. J Exp Biol, 2012, 215(12): 2060-2071. doi: 10.1242/jeb.065920
    [33]
    CARPENTER K E, BERRA T M, JR J M H. Swim bladder and posterior lateral line nerve of the nurseryfish, Kurtus gulliveri (Perciformes: Kurtidae)[J]. J Morphol, 2004, 260(2): 193-200. doi: 10.1002/jmor.10184
    [34]
    MOTOMURA H, IWATSUKI Y. Review of Polydactylus species (Perciformes: Polynemidae) characterized by a large black anterior lateral line spot, with descriptions of two new species[J]. Ichthyol Res, 2001, 48(4): 337-354. doi: 10.1007/s10228-001-8157-y
    [35]
    WEBB J F. Laterophysic connection: a unique link between the swimbladder and the lateral line system in Chaetodon (Perciformes: Chaetodontidae)[J]. Copeia, 1998(4): 1032-1036.
    [36]
    BECKER E A, BIRD N C, WEBB J F. Post-embryonic development of canal and superficial neuromasts and the generation of two cranial lateral line phenotypes[J]. J Morphol, 2016, 227(10): 1273-1291.
    [37]
    WINDSOR S P, MCHENRY M J. The influence of viscous hydrodynamics on the fish lateral-line system[J]. Integr Comp Biol, 2009, 49(6): 691-701. doi: 10.1093/icb/icp084
    [38]
    YOSHIZAWA M, JEFFERY W R, van NETTEN S M, et al. The sensitivity of lateral line receptors and their role in the behavior of Mexican blind cavefish (Astyanax mexicanus)[J]. J Exp Biol, 2014, 217(6): 886-895. doi: 10.1242/jeb.094599
  • Related Articles

    [1]LI Junwei, HU Ruiping, CHEN Suwen, GUO Yongjian, ZHU Changbo, LI Ting, XIE Xiaoyong, SU Jiaqi. Effects of low salinity pressure on biological tissue and immunity enzymes activities of Sipunculus nudus[J]. South China Fisheries Science, 2021, 17(4): 41-48. DOI: 10.12131/20210022
    [2]GE Wanyi, LEI Lina, JIANG Xinyu, LI Xia, SUN Zhaosheng, WANG Wei, GAO Qian. cDNA cloning and expression pattern analysis of b2m from spotted sea bass (Lateolabrax maculatus)[J]. South China Fisheries Science, 2020, 16(6): 47-56. DOI: 10.12131/20200031
    [3]YU Jiaxin, WU Fang, SUN Chengfei, DONG Junjian, TIAN Yuanyuan, YE Xing. Cloning, structure analysis and expression of interferon gamma (IFN-γ) gene in Oreochromis niloticus[J]. South China Fisheries Science, 2017, 13(1): 85-93. DOI: 10.3969/j.issn.2095-0780.2017.01.011
    [4]LIANG Nan, HU Kun, LIU Tengfei, WU Yingjie, YANG Xianle. Tissue distribution and elimination of methylene blue and its metabolites in allogynogenetic crucian carps (Carassius auratus gibelio)[J]. South China Fisheries Science, 2017, 13(1): 19-25. DOI: 10.3969/j.issn.2095-0780.2017.01.003
    [5]QIU Ying, HUANG Guiju, LIU Baosuo, FAN Sigang, LI Youning, CHEN Mingqiang, YU Dahui. Cloning of GLUT1 gene from winged pearl oyster Pteria penguin and its expression in response to glucose challenge[J]. South China Fisheries Science, 2016, 12(5): 81-89. DOI: 10.3969/j.issn.2095-0780.2016.05.010
    [6]LI Yundong, ZHOU Falin, HUANG Jianhua, MA Zhenhua, YANG Qibin, QIU Lihua, FU Mingjun, CHEN Jinsong, JIANG Shigui. Cloning and expression analysis of Cathepsin L cDNA of Penaeus monodon[J]. South China Fisheries Science, 2016, 12(3): 58-66. DOI: 10.3969/j.issn.2095-0780.2016.03.008
    [7]LIU Yujiao, ZHU Huaping, LU Maixin, LIU Zhigang, CAO Jianmeng, GAO Fengying, KE Xiaoli. Effect of salinity stress on expression of PRLⅠgenes from tilapia and their distribution in different tissues[J]. South China Fisheries Science, 2014, 10(6): 51-57. DOI: 10.3969/j.issn.2095-0780.2014.06.007
    [8]LI Wuhu, REN Chunhua, HU Chaoqun, JIANG Xiao, ZHONG Ming. cDNA cloning and tissue distribution of calmodulin from sea cucumber (Stichopus monotuberculatus)[J]. South China Fisheries Science, 2014, 10(5): 75-81. DOI: 10.3969/j.issn.2095-0780.2014.05.011
    [9]ZHANG Han, JIANG Jingzhe, HE Jian, GU Lu, WANG Jiangyong. Study on distribution of hemocyanin in different tissues of Haliotis diversicolor[J]. South China Fisheries Science, 2014, 10(4): 34-38. DOI: 10.3969/j.issn.2095-0780.2014.04.006
    [10]PAN Liling, HUANG Guiju, CHENG Shuying, WANG Xiaoning, YU Dahui. cDNA cloning, characterization and challenge-based expression profiles of cathepsin D in winged pearl oyster Pteria penguin[J]. South China Fisheries Science, 2012, 8(2): 22-29. DOI: 10.3969/j.issn.2095-0780.2012.02.004

Catalog

    Recommendations
    Hctlr1 involved in antimicrobial immune response by myd88-nf-κb signaling pathway inhyriopsis cumingii
    LU Junyi et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    Isolation, identification and drug sensitivity ofedwardsiella tardafrompelteobagrus fulvidraco
    GAO Xuan et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    Pharmacokinetics and residual elimination pattern of enrofloxacin and its metabolite ciprofloxacin inbabylonia areolate
    DENG Dong et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    Molecular identification and expression characteristics analysis ofsubfatingene from grass carp
    YANG Boya et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    Molecular and electronic properties of schiff bases derived from different aniline derivatives: density functional theory study
    Ali J.A. Al-Sarray, EURASIAN CHEMICAL COMMUNICATIONS, 2023
    Construction of and polymerizing characterization witheukaryotic expression system for ostreid herpesvirus 1 structural proteins
    CAO Shuhua et al., JOURNAL OF FISHERIES OF CHINA, 2024
    Linker histone h1 drives heterochromatin condensation via phase separation in arabidopsis
    He, Shengbo et al., PLANT CELL, 2024
    Multi-scale investigation on composition-structure of c-(a)-s-h with different al/si ratios under attack of decalcification action
    Jin, Ming et al., CEMENT AND CONCRETE RESEARCH, 2023
    Mvmrl: a multi-view molecular representation learning method for molecular property prediction
    BRIEFINGS IN BIOINFORMATICS, 2024
    Effects of hbn content and particle size on microstructure, mechanical and tribological properties of nicr-cr3c2-hbn coatings
    SURFACE & COATINGS TECHNOLOGY, 2024
    Powered by
    Article views (2358) PDF downloads (39) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return