LI Min, HUANG Zirong, XU Youwei, CHEN Zuozhi. Population genetic structure of brushtooth lizardfish (Saurida undosquamis) based on mitochondrial cytochrome b gene sequences[J]. South China Fisheries Science, 2019, 15(6): 41-48. DOI: 10.12131/20190123
Citation: LI Min, HUANG Zirong, XU Youwei, CHEN Zuozhi. Population genetic structure of brushtooth lizardfish (Saurida undosquamis) based on mitochondrial cytochrome b gene sequences[J]. South China Fisheries Science, 2019, 15(6): 41-48. DOI: 10.12131/20190123

Population genetic structure of brushtooth lizardfish (Saurida undosquamis) based on mitochondrial cytochrome b gene sequences

More Information
  • Received Date: June 13, 2019
  • Revised Date: July 03, 2019
  • Accepted Date: August 15, 2019
  • Available Online: August 22, 2019
  • We examined the population genetic structure of brushtooth lizardfish (Saurida undosquamis) from the coastal waters and continental shelf of China based on the complete cytochrome b gene sequences. A total of 142 haplotypes have been derived from 266 individuals at eight sampling sites. Genetic diversity analysis shows that the S. undosquamis samples were characterized by rather high haplotype diversity (0.925 1−0.992 9) and relatively low nucleotide diversity (0.003 145−0.003 852). Median joining network shows that the haplotypes were connected in a star-like manner with four dominant haplotypes without clades of samples corresponding to sampling localities. Analyses of molecular variance suggest that nearly all the genetic variation (99.79%) was from individuals within population rather than from the populations. The pairwise FST reveals no genetic differentiation among different populations. A high rate of gene flow between populations implies a panmixia for S. undosquamis among the sampling sites. Neutrality tests show significant deviation of population historical dynamics from stable population model, and mismatch distribution analysis indicates a late Pleistocene expansion in S. undosquamis. The expansion time was estimated to be 40−100 thousands years ago. The results reveal that S. undosquamis from the coastal waters and continental shelf of China belong to the same population and can be managed as a unit in fisheries.

  • [1]
    FROESE R, PAULY D. FishBase[DB/OL]. [2019-04-25]. https://www.fishbase.de/summary/Saurida-undosquamis.html.
    [2]
    江艳娥, 许友伟, 范江涛, 等. 南海北部陆架水域多齿蛇鲻与花斑蛇鲻的年龄与生长[J]. 中国水产科学, 2019, 26(1): 82-90.
    [3]
    陈再超, 刘继兴. 南海经济鱼类[M]. 广州: 广东科学与技术出版社, 1982: 184-188.
    [4]
    舒黎明, 邱永松. 南海北部花斑蛇鲻生长死亡参数估计及开捕规格[J]. 湛江海洋大学学报, 2004, 24(3): 29-35. doi: 10.3969/j.issn.1673-9159.2004.03.007
    [5]
    舒黎明, 邱永松. 南海北部多齿蛇鲻生物学分析[J]. 中国水产科学, 2004, 11(2): 154-158. doi: 10.3321/j.issn:1005-8737.2004.02.012
    [6]
    黄梓荣. 休渔对南海北部多齿蛇鲻资源的影响[J]. 湛江海洋大学学报, 2002, 22(6): 26-31. doi: 10.3969/j.issn.1673-9159.2002.06.006
    [7]
    卢伙胜, 颜云榕, 侯刚. 等. 2009年度南海渔业资源调查报告[R]. 湛江: 广东海洋大学, 2010.
    [8]
    孙典荣, 林昭进. 北部湾主要经济鱼类资源变动分析及保护对策探讨[J]. 热带海洋学报, 2004, 2(2): 62-68. doi: 10.3969/j.issn.1009-5470.2004.02.008
    [9]
    陈作志, 邱永松, 徐姗楠, 等. 北部湾花斑蛇鲻生物学特征的演化[J]. 中国水产科学, 2012, 19(2): 321-328.
    [10]
    COATES D J, BYRNE M, MORITZ C. Genetic diversity and conservation units: dealing with the species-population continuum in the age of genomics[J/OL]. Front Ecol Evol, 2018, 60 [2019-04-26]. https://www.frontiersin.org/articles/10.3389/fevo.2018.00165/full. doi: 10.3389/fevo.2018.00165.
    [11]
    REISS H, HOARAU G, DICKEY-COLLAS M, et al. Genetic population structure of marine fish: mismatch between biological and fisheries management units[J]. Fish Fish, 2009, 10(4): 361-395. doi: 10.1111/j.1467-2979.2008.00324.x
    [12]
    GOETHEL D R, BERGER A M. Accounting for spatial complexities in the calculation of biological reference points: effects of misdiagnosing population structure for stock status indicators[J]. Can J Fish Aquat Sci, 2017, 74(11): 1878-1894. doi: 10.1139/cjfas-2016-0290
    [13]
    PALSBØLL P J, BERUBE M, ALLENDORF F W. Identification of management units using population genetic data[J]. Trends Ecol Evol, 2007, 22(1): 11-16. doi: 10.1016/j.tree.2006.09.003
    [14]
    MALI K S, KUMAR M V, FAREJIYA M K, et al. Reproductive biology of Saurida tumbil (Bloch 1795) and Saurida undosquamis (Richardson 1848) inhabiting Northwest coast of India[J]. Int J Pure App Biosci, 2017, 5(6): 957-964. doi: 10.18782/2320-7051.6080
    [15]
    CHHANDAPRAJNADARSINI E M, ROUL S K, SWAIN S, et al. Biometric analysis of brushtooth lizard fish Saurida undosquamis (Richardson, 1848) from Mumbai waters[J]. J Entomol Zool Stud, 2018, 6(2): 1165-1171.
    [16]
    NAJMUDEEN T M, SEETHA P K, ZACHARIA P U. Stock dynamics of the brushtooth lizardfish Saurida undosquamis (Richardson, 1848) from a tropical multispecies fishery in the southeastern Arabian Sea[J/OL]. Aquat Living Resour, 2019, 32 [2019-04-26]. https://www.alr-journal.org/articles/alr/abs/2019/01/alr180110/alr180110.html. doi: 10.1051/alr/2019006.
    [17]
    张俊, 陈国宝, 陈作志, 等. 南沙南部陆架海域渔业资源声学评估[J]. 南方水产科学, 2015, 11(5): 1-10. doi: 10.3969/j.issn.2095-0780.2015.05.001
    [18]
    许友伟, 陈作志, 范江涛, 等. 南沙西南陆架海域底拖网渔获物组成及生物多样性[J]. 南方水产科学, 2015, 11(5): 76-81. doi: 10.3969/j.issn.2095-0780.2015.05.009
    [19]
    HALL T, BIOSCIENCES I, CARLSBAD C. BioEdit: an important software for molecular biology[J]. GERF Bull Biosci, 2011, 2(1): 60-61.
    [20]
    KUMAR S, STECHER G, TAMURA K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Mol Biol Evol, 2016, 33(7): 1870-1874. doi: 10.1093/molbev/msw054
    [21]
    POSADA D. ModelTest Server: a web-based tool for the statistical selection of models of nucleotide substitution online[J]. Nucleic Acids Res, 2006, 34(sup 2): W700-W703.
    [22]
    ROZAS J, FERRER-MATA A, SÁNCHEZ-DELBARRIO J C, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets[J]. Mol Biol Evol, 2017, 34(12): 3299-3302. doi: 10.1093/molbev/msx248
    [23]
    POLZIN T, DANESCHMAND S V. On Steiner trees and minimum spanning trees in hypergraphs[J]. Oper Res Lett, 2003, 31(1): 12-20. doi: 10.1016/S0167-6377(02)00185-2
    [24]
    BANDELT H J, FORSTER P, ROHL A. Median-joining networks for inferring intraspecific phylogenies[J]. Mol Biol Evol, 1999, 16(1): 37-48. doi: 10.1093/oxfordjournals.molbev.a026036
    [25]
    EXCOFFIER L, LISCHER H E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows[J]. Mol Ecol Resour, 2010, 10(3): 564-567. doi: 10.1111/j.1755-0998.2010.02847.x
    [26]
    TAJIMA F. Statistical-method for testing the neutral mutation hypothesis by DNA polymorphism[J]. Genetics, 1989, 123(3): 585-595.
    [27]
    FU Y X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection[J]. Genetics, 1997, 147(2): 915-925.
    [28]
    EXCOFFIER L. Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model[J]. Mol Ecol, 2004, 13(4): 853-864. doi: 10.1046/j.1365-294X.2003.02004.x
    [29]
    RAY N, CURRAT M, EXCOFFIER L. Intra-deme molecular diversity in spatially expanding populations[J]. Mol Biol Evol, 2003, 20(1): 76-86. doi: 10.1093/molbev/msg009
    [30]
    HARPENDING H C. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution[J]. Hum Biol, 1994, 66(4): 591-600.
    [31]
    ROGERS A R, HARPENDING H. Population growth makes waves in the distribution of pairwise genetic differences[J]. Mol Biol Evol, 1992, 9(3): 552-569.
    [32]
    KOCHER T D, STEPIEN C A. Molecular systematics of fishes[M]. New York: Academic Press, 1997: 113-128.
    [33]
    FRANKHAM R, BALLOU J D, BRISCOE D A. Introduction to conservation genetics[M]. Cambridge: Cambridge University Press, 2002: 78-104.
    [34]
    边力, 王鹏飞, 陈四清, 等. 基于线粒体Cytb基因序列的绿鳍马面鲀6个野生群体的遗传结构分析[J]. 中国水产科学, 2018, 25(4): 827-836.
    [35]
    熊丹, 李敏, 李永振, 等. 南海短尾大眼鲷线粒体Cyt b基因序列及种群判别分析[J]. 中国水产科学, 2016, 23(1): 188-197.
    [36]
    夏月恒, 章群, 高志远, 等. 中国近海鮸鱼遗传多样性的细胞色素b全序列分析[J]. 广东农业科学, 2013, 40(3): 101-105. doi: 10.3969/j.issn.1004-874X.2013.03.034
    [37]
    彭博, 章群, 赵爽, 等. 中国近海小黄鱼遗传变异的细胞色素b序列分析[J]. 广东农业科学, 2010, 37(2): 131-135. doi: 10.3969/j.issn.1004-874X.2010.02.045
    [38]
    沈朕, 关洪斌, 郑风荣, 等. 基于cytb 和D-loop的4个大泷六线鱼群体遗传多样性分析[J]. 海洋科学进展, 2017, 35(4): 524-534. doi: 10.3969/j.issn.1671-6647.2017.04.009
    [39]
    PINSKY M L, PALUMBI S R. Meta-analysis reveals lower genetic diversity in overfished populations[J]. Mol Ecol, 2014, 23(1): 29-39. doi: 10.1111/mec.12509
    [40]
    GRANT W S, BOWEN B W. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation[J]. J Hered, 1998, 89(5): 415-426. doi: 10.1093/jhered/89.5.415
    [41]
    WANG P. Response of western Pacific marginal seas to glacial cycles: paleoceanographic and sedimentological features[J]. Mar Geol, 1999, 156(1): 5-39.
    [42]
    IMBRIE J, BOYLE E A, CLEMENS S C, et al. On the structure and origin of major glaciation cycles 1. Linear responses to Milankovitch forcing[J]. Paleoceanography, 1992, 7(6): 701-738. doi: 10.1029/92PA02253
    [43]
    黄小林, 李文俊, 林黑着, 等. 基于线粒体DNA D-loop序列的黄斑篮子鱼群体遗传多样性分析[J]. 热带海洋学报, 2018, 37(4): 45-51.
    [44]
    李敏, 张鹏, 李玉芳, 等. 南海扁舵鲣种群遗传结构和遗传多样性评价[J]. 南方水产科学, 2015, 11(5): 82-89. doi: 10.3969/j.issn.2095-0780.2015.05.010
    [45]
    李敏, 李玉芳, 张鹏, 等. 基于线粒体控制区序列的南海圆舵鲣种群遗传结构分析[J]. 南方水产科学, 2016, 12(4): 88-95. doi: 10.3969/j.issn.2095-0780.2016.04.011
    [46]
    HEWITT G M. The genetic legacy of the Quaternary ice ages[J]. Nature, 2000, 405(6789): 907-913. doi: 10.1038/35016000
    [47]
    PALUMBI S R. Genetic divergence, reproductive isolation, and marine speciation[J]. Annu Rev Ecol Syst, 1994, 25: 547-572. doi: 10.1146/annurev.es.25.110194.002555
    [48]
    苏纪兰. 中国近海水文[M]. 北京: 海洋出版社, 2005: 1-367.
    [49]
    孙冬芳, 董丽娜, 李永振, 等. 南海北部海域多齿蛇鲻的种群分析[J]. 水产学报, 2010, 34(9): 1387-1394.
    [50]
    LAIKRE L, PALM S, RYMAN N. Genetic population structure of fishes: Implications for coastal zone management[J]. Ambio, 2005, 34(2): 111-119. doi: 10.1579/0044-7447-34.2.111
  • Related Articles

    [1]LI Wenjing, LI Chunsheng, WANG Yueqi, CHEN Shengjun, ZHAO Yongqiang, WU Yanyan, LI Laihao. Improvement effect of Halanaerobium fermentans YL9-2 on quality and flavor of fish sauce during fermentation[J]. South China Fisheries Science, 2022, 18(2): 115-123. DOI: 10.12131/20210314
    [2]XU Hao, LIANG Xuhong, WANG Congcong, LI Gang. Population genetic structures of Dosidicus gigas in Southeast Pacific Ocean based on mitochondrial NADH dehydrogenase subunit 2 gene[J]. South China Fisheries Science, 2022, 18(1): 153-159. DOI: 10.12131/20210119
    [3]ZHOU Kaimin, JIANG Shigui, HUANG Jianhua, YANG Qibin, JIANG Song, QIU Lihua, YANG Lishi, ZHOU Falin. Cloning and expression analysis of Chitinase-2 from Penaeus monodon during molting cycle and different larval developmental stages[J]. South China Fisheries Science, 2017, 13(4): 59-68. DOI: 10.3969/j.issn.2095-0780.2017.04.008
    [4]QIAN Weiguo, YE Chao, WANG Weijie, LU Kexiang. Underwater irradiance and optimal allocation of 2 kW straight type fish aggregation lamps[J]. South China Fisheries Science, 2015, 11(2): 90-95. DOI: 10.3969/j.issn.2095-0780.2015.02.013
    [5]YU Guohui, CHEN Yanhong, CHENG Ping, LI Yongjian, YANG Zihong, CHEN Yuanfeng. Influence of several metal ions on growth and nitrite removal of Rhodopseudomonas palustris strain 2-8[J]. South China Fisheries Science, 2011, 7(4): 30-35. DOI: 10.3969/j.issn.2095-0780.2011.04.005
    [6]HUANG Haili, DU Xiaodong, ZHOU Yinhuan. Effects of feeding larvae and juveniles of Haliotis diversicolor with 2 benthic diatoms[J]. South China Fisheries Science, 2011, 7(1): 32-38. DOI: 10.3969/j.issn.2095-0780.2011.01.005
    [7]CHEN Lei, CHENG Yuanzhi, WANG Rixin, XU Tianjun. Cloning and sequence analysis of Cyt b gene in 2 Gobiidae fishes[J]. South China Fisheries Science, 2010, 6(5): 43-49. DOI: 10.3969/j.issn.1673-2227.2010.05.007
    [8]ZHOU Chen. Karyotype analysis of chromosome of 2 Gobioid species[J]. South China Fisheries Science, 2010, 6(4): 72-76. DOI: 10.3969/j.issn.1673-2227.2010.04.012
    [9]YU Da-hui, CHU ka-hou. Study on ITS 2 molecular markers of six pearl oyster species in the genus Pinctada[J]. South China Fisheries Science, 2005, 1(4): 6-12.
    [10]YU Da-hui, LI You-ning, Wu Kai-chang. Analysis on sequence variation of ITS 2 rDNA in Pinctada fucata from China, Japan and Australia[J]. South China Fisheries Science, 2005, 1(2): 1-6.
  • Cited by

    Periodical cited type(5)

    1. 纪霜,李慷,靳锡辰,罗雪能,沈紫倩,谢斌,韩焕,张峻铭,刘至治,刘利平. 地衣芽孢杆菌对草鱼生长性能、肌肉品质及土腥味防控的影响. 南方农业学报. 2025(01): 334-342 .
    2. 张璇,莫皓然,赵会,李鑫,何雨,黄名正,唐维媛. 不同烹饪方式对草鱼肉挥发性风味成分的影响. 食品工业科技. 2024(10): 263-272 .
    3. 赵燕芬,张玉莹,张雪迪,孙培梓,任响,李冬梅. 水产品挥发性风味化合物生成机理及其分析技术研究进展. 水产科学. 2024(04): 664-674 .
    4. 覃慧. 浅析草鱼小池塘自然流水养殖技术. 广东蚕业. 2023(04): 50-52 .
    5. 崔佳勤,章海鑫,罗国芝,谭洪新. 不同碳氮比对生物絮凝技术(BFT)养殖水体中土腥味物质积累量的影响. 渔业现代化. 2023(06): 9-16 .

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return