WANG Jian, ZENG Benhe, XU Zhaoli, ZHANG Bianbian, LIU Haiping, WANG Wanliang, WANG Jinlin, ZHOU Jianshe, HUANG Liping. Effect of dietary protein level on digestive enzyme activity and histological structure in intestine and liver of juvenile Schizopygopsis younghusbandi[J]. South China Fisheries Science, 2019, 15(6): 112-119. DOI: 10.12131/20190107
Citation: WANG Jian, ZENG Benhe, XU Zhaoli, ZHANG Bianbian, LIU Haiping, WANG Wanliang, WANG Jinlin, ZHOU Jianshe, HUANG Liping. Effect of dietary protein level on digestive enzyme activity and histological structure in intestine and liver of juvenile Schizopygopsis younghusbandi[J]. South China Fisheries Science, 2019, 15(6): 112-119. DOI: 10.12131/20190107

Effect of dietary protein level on digestive enzyme activity and histological structure in intestine and liver of juvenile Schizopygopsis younghusbandi

More Information
  • Received Date: May 18, 2019
  • Revised Date: June 20, 2019
  • Accepted Date: July 07, 2019
  • Available Online: July 16, 2019
  • To explore the effects of different feed protein levels on the digestive enzyme activity and histological structure in the intestine and liver of juvenile Schizopygopsis younghusbandi, we designed six kinds of equal-energy experimental feeds with different protein levels (20%, 25%, 30%, 35%, 40%, 45%) to feed the juveniles with initial body mass of (22.42±0.56) g for 60 d. The results show that with the increase of feed protein level, the protease activity in intestine and liver increased first then declined. The protease activity in 35% protein group was significantly higher than that in the other groups (P<0.05). The lipase and amylase activities reduced significantly (P<0.05). The wall thickness and villus height of foregut, midgut and hindgut all increased and then decreased (P<0.05). The wall thickness of foregut and midgut were highest in 30% group, while the wall thickness of the hindgut was highest in the 35% group. The villus height of foregut, midgut and hindgut were highest in 30% group. Feed protein level higher than 35% may damage liver tissue structure. Under this condition, considering the digestive enzymes activity and histological structure of intestines and liver, the optimum protein level of juvenile S. younghusbandi should be 30%.

  • [1]
    陈义方, 李卓佳, 牛津, 等. 饲料蛋白水平对不同规格凡纳滨对虾蛋白质表观消化率和消化酶活性的影响[J]. 南方水产科学, 2012, 08(5): 66-71. doi: 10.3969/j.issn.2095-0780.2012.05.010
    [2]
    孙翰昌, 徐敬明, 庞敏. 饲料蛋白水平对瓦氏黄颡鱼消化酶活性的影响[J]. 水生态学杂志, 2010, 31(2): 84-88.
    [3]
    吴永恒, 王秋月, 冯政夫, 等. 饲料粗蛋白含量对刺参消化酶及消化道结构的影响[J]. 海洋科学, 2012, 36(1): 36-41. doi: 10.3969/j.issn.1671-6647.2012.01.005
    [4]
    LEIGH S C, NGUYEN-PHUC B Q, GERMAN D P. The effects of protein and fiber content on gut structure and function in zebrafish (Danio rerio)[J]. J Comp Physiol B, 2018, 188: 237-253. doi: 10.1007/s00360-017-1122-5
    [5]
    段友健. 拉萨裸裂尻鱼个体生物学和种群动态研究[D]. 武汉: 华中农业大学, 2015: 93-94.
    [6]
    李芳. 西藏尼洋河流域水生生物研究及水电工程对其影响的预测评价[D]. 西安: 西北大学, 2006: 69-73.
    [7]
    王孝平, 邢树礼. 考马斯亮法测定蛋白质含量的研[J]. 天津化工, 2009, 23(3): 40-41. doi: 10.3969/j.issn.1008-1267.2009.03.016
    [8]
    王常安, 户国, 孙鹏, 等. 饲料蛋白质和脂肪水平对亚东鲑亲鱼生长性能、消化酶活性和血清指标的影响[J]. 动物营养学报, 2017, 29(2): 571-582. doi: 10.3969/j.issn.1006-267x.2017.02.025
    [9]
    李成, 秦溱, 李金龙, 等. 不同蛋白水平饲料对光倒刺鲃幼鱼生长, 消化酶及体成分的影响[J]. 饲料工业, 2018, 39(24): 34-39.
    [10]
    梁萍, 秦志清, 林建斌, 等. 饲料中不同蛋白质水平对半刺厚唇鱼幼鱼生长性能及消化酶活性的影响[J]. 中国农学通报, 2018, 34(2): 136-140. doi: 10.11924/j.issn.1000-6850.casb17090056
    [11]
    桑永明, 杨瑶, 尹航, 等. 饲料蛋白水平对方正银鲫幼鱼生长, 体成分, 肝脏生化指标和肠道消化酶活性的影响[J]. 水生生物学报, 2018, 42(4): 736-743. doi: 10.7541/2018.090
    [12]
    RAMESH R, DUBE K, REDDY A K, et al. Effect of varying protein levels on growth and digestive enzyme activities of pengba Osteobrama belangeri (Valenciennes, 1844)[J]. Ind J Fish, 2017, 64: 206-213.
    [13]
    MENDEZ-MARTINEZ Y, GARCIA-GUERRERO M U, MARTINEZ-CORDOVA L R, et al. Effect of different ratios of dietary protein-energy on growth, body proximal composition, digestive enzyme activity, and hepatopancreas histology in Macrobrachium americanum (Bate, 1868) prawn juveniles[J]. Aquaculture, 2018, 485: 1-11. doi: 10.1016/j.aquaculture.2017.11.012
    [14]
    TOK N C, JAIN K K, PRABU D L, et al. Metabolic and digestive enzyme activity of Pangasianodon hypophthalmus (Sauvage, 1878) fingerlings in response to alternate feeding of different protein levels in the diet[J]. Aquacult Res, 2017, 48(6): 2895-2911. doi: 10.1111/are.2017.48.issue-6
    [15]
    SILVA W S, COSTA L S, LÓPEZ-OLMEDA J F, et al. Gene expression, enzyme activity and performance of Nile tilapia larvae fed with diets of different CP levels[J]. Animal, 2019, 13(7): 1376-1384. doi: 10.1017/S175173111800318X
    [16]
    米海峰. 不同蛋白源和大豆抗营养因子对牙鲆蛋白消化酶的活性与基因表达的影响[D]. 青岛: 中国海洋大学, 2008: 39-43.
    [17]
    LÓPEZ-LÓPEZ S, NOLASCO H, VILLARREAL-COLMENARES H A. Digestive enzyme response to supplemental ingredients in practical diets for juvenile freshwater crayfish Cherax quadricarinatus[J]. Aquacult Nut, 2005, 11(2): 79-85.
    [18]
    吴本丽, 黄龙, 何吉祥, 等. 长期饥饿后异育银鲫对饲料蛋白质的需求[J]. 动物营养学报, 2018, 30(6): 2215-2225. doi: 10.3969/j.issn.1006-267x.2018.06.025
    [19]
    赵书燕, 林黑着, 黄忠, 等. 不同蛋白质水平下添加小肽对石斑鱼生长、消化酶、血清生化和抗氧化能力的影响[J]. 南方水产科学, 2016, 12(3): 15-23. doi: 10.3969/j.issn.2095-0780.2016.03.003
    [20]
    ZHANG W, LIU K, TAN B P, et al. Transcriptome, enzyme activity and histopathology analysis reveal the effects of dietary carbohydrate on glycometabolism in juvenile largemouth bass, Micropterus salmoides[J]. Aquaculture, 2019, 504: 39-51. doi: 10.1016/j.aquaculture.2019.01.030
    [21]
    WANG L G, HU S Y, LOU B, et al. Effect of different dietary protein and lipid levels on the growth, body composition, and intestinal digestive enzyme activities of juvenile yellow drum Nibea albiflora (Richardson)[J]. J Ocean Univ Chin, 2018, 17(5): 1261-1267. doi: 10.1007/s11802-018-3660-1
    [22]
    HEIKKINEN J, VIELMA J, KEMILAINEN O, et al. Effects of soybean meal based diet on growth performance, gut histopathology and intestinal microbiota of juvenile rainbow trout (Oncorhynchus mykiss)[J]. Aquaculture, 2006, 261(1): 259-268. doi: 10.1016/j.aquaculture.2006.07.012
    [23]
    CHEN F J, WANG H C. Study on histological structure of intestine in Gymnocypris przewalskii with different age[J]. P Vet Med, 2013, 34(1): 34-37.
    [24]
    WEI Y L, LIANG M Q, ZHENG K K, et al. The effects of fish protein hydrolysate on the digestibility of juvenile turbot (Scophthalmus maximus L)[J]. Acta Hydrobiol Sinica, 2014, 38(5): 910-920.
    [25]
    徐静. 蛋白对生长中期草鱼生产性能、肠道、机体和鳃健康及肌肉品质的作用及其作用机制[D]. 雅安: 四川农业大学, 2016: 34-35.
    [26]
    孙金辉, 范泽, 张美静, 等. 饲料蛋白水平对鲤幼鱼肝功能和抗氧化能力的影响[J]. 南方水产科学, 2017, 13(3): 113-119. doi: 10.3969/j.issn.2095-0780.2017.03.015
    [27]
    李坚明, 甘晖, 冯广朋, 等. 饲料脂肪含量与奥尼罗非鱼幼鱼肝脏形态结构特征的相关性[J]. 南方水产, 2008, 4(5): 37-43. doi: 10.3969/j.issn.2095-0780.2008.05.006
  • Related Articles

    [1]XIAO Ge, XU Bo, ZHANG Heng, TANG Fenghua, CHEN Feng, ZHU Wenbin. A study on spatial-temporal distribution and marine environmental elements of Symplectoteuthis oualaniensis fishing grounds in outer sea of Arabian Sea[J]. South China Fisheries Science, 2022, 18(4): 10-19. DOI: 10.12131/20210217
    [2]YUAN Meng, CHEN Zuozhi, ZHANG Jun, JIANG Yan'e, TANG Yong, XU Shannan. Community structure of mesopelagic fish species in northern slope of South China Sea[J]. South China Fisheries Science, 2018, 14(1): 85-91. DOI: 10.3969/j.issn.2095-0780.2018.01.011
    [3]MA Huan, QIN Chuanxin, CHEN Pimao, FENG Xue, YUAN Huarong, LI Xiaoguo, LIN Huijie. Study of biomass carbon storage in Zhelin Bay marine ranch of South China Sea[J]. South China Fisheries Science, 2017, 13(6): 56-64. DOI: 10.3969/j.issn.2095-0780.2017.06.007
    [4]JIANG Yan′e, FANG Zhanqiang, LIN Zhaojin, ZHANG Peng, CHEN Zuozhi. Trace elements in statoliths of Sthenoteuthis oualaniensis in the South China Sea[J]. South China Fisheries Science, 2016, 12(4): 71-79. DOI: 10.3969/j.issn.2095-0780.2016.04.009
    [5]FAN Jiangtao, CHEN Zuozhi, ZHANG Jun, FENG Xue. Sthenoteuthis oualaniensis fishing grounds analysis based on marine environmental factors and different weight coefficients in the Zhongxisha and Xisha Islands, South China Sea[J]. South China Fisheries Science, 2016, 12(4): 57-63. DOI: 10.3969/j.issn.2095-0780.2016.04.007
    [6]ZHANG Zhe, GONG Xiuyu, HU Ying, ZHANG Linbao, CHEN Haigang, HUANG Honghui, CAI Wengui. Abundance of bacterioplankton and virioplankton in the central and northern South China Sea in autumn[J]. South China Fisheries Science, 2016, 12(4): 9-16. DOI: 10.3969/j.issn.2095-0780.2016.04.002
    [7]KONG Xiaolan, YAN Lei, ZHANG Peng, CHEN Zuozhi. A preliminary study on biological characteristics of Auxis thazard in the South China Sea[J]. South China Fisheries Science, 2015, 11(5): 100-107. DOI: 10.3969/j.issn.2095-0780.2015.05.012
    [8]JIANG Yan′e, ZHANG Peng, LIN Zhaojin, QIU Yongsong, FANG Zhanqiang, CHEN Zuozhi. Statolith morphology of purpleback flying squid (Sthenoeuthis oualaniensis) in the offshore South China Sea[J]. South China Fisheries Science, 2015, 11(5): 27-37. DOI: 10.3969/j.issn.2095-0780.2015.05.004
    [9]ZHAO Minghui, HUANG Honghui, QI Zhanhui, LI Chunhou, LIN Zhaojin, CHEN Guizhu. Landscape pattern analysis of plankton in northern South China Sea[J]. South China Fisheries Science, 2010, 6(6): 41-45. DOI: 10.3969/j.issn.1673-2227.2010.06.007
    [10]JIANG Yane, LIN Zhaojin, HUANG Zirong. Biodiversity of fishery resources in the continental shelf of northern South China Sea[J]. South China Fisheries Science, 2009, 5(5): 32-37. DOI: 10.3969/j.issn.1673-2227.2009.05.006

Catalog

    Article views (5012) PDF downloads (38) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return