SONG Rongqun, WANG Zhenlu, GUO Xingchen, WANG Yizhou, XIONG Dongmei, YE Huan, LI Zhigang, SHAO Jian. Intestinal tissue structure, digestive enzymes, antioxidant enzymes and intestinal flora diversity between second filial generation and wild population of Brachymystax tsinlingensis Li, 1966[J]. South China Fisheries Science, 2025, 21(1): 85-95. DOI: 10.12131/20240148
Citation: SONG Rongqun, WANG Zhenlu, GUO Xingchen, WANG Yizhou, XIONG Dongmei, YE Huan, LI Zhigang, SHAO Jian. Intestinal tissue structure, digestive enzymes, antioxidant enzymes and intestinal flora diversity between second filial generation and wild population of Brachymystax tsinlingensis Li, 1966[J]. South China Fisheries Science, 2025, 21(1): 85-95. DOI: 10.12131/20240148

Intestinal tissue structure, digestive enzymes, antioxidant enzymes and intestinal flora diversity between second filial generation and wild population of Brachymystax tsinlingensis Li, 1966

More Information
  • Received Date: June 28, 2024
  • Revised Date: October 09, 2024
  • Accepted Date: October 20, 2024
  • Available Online: November 08, 2024
  • In order to investigate the digestive system characteristics of subadults of Brachymystax tsinlingensis (Li, 1966) in different populations, and to provide a reference for its large-scale artificial breeding, resource conservation and utilization, we analyzed the characteristics of intestinal tissue, digestive enzymes, antioxidant enzymes and diversity of intestinal microbiota of the second filial generation of artificially bred B. tsinlingensis Li, 1966 [Bt, body length (15.40±0.82) cm, body mass (51.50±11.90) g] and the wild population in natural habitats [WBt, body length (18.17±2.57) cm, body mass (85.68±34.85) g] by histological method and 16S rRNA high-throughput sequencing techniques. The results show that the intestinal tissues of Bt and WBt had the same structure, both having intestinal glandular tissues. The thickness of the muscularis propria of WBt was significantly higher than that of Bt (p<0.05). There was no significant difference in the activity of intestinal digestive enzymes (p>0.05), and the activity of intestinal superoxide dismutase was significantly higher in Bt than in WBt (p<0.05). The dominant phyla of the intestinal flora of Bt and WBt were similar, and both of them were dominated by the phyla of Ascomycetes and thick-walled phyla. However, the dominant genera of the bacteria differed greatly. The dominant genera of the bacteria in Bt were the genera of Aeromonas, Clostridium narrowly_18 (Clostridium_sensu_stricto_18) and Novosphingobium, while the dominant genera in WBt were Yersinia and ZOR0006. BugBase phenotypic predictions showed higher abundance of gram-negative bacteria, aerobes, mobile elements, potential pathogens and parthenogenetic anaerobes in Bt, but the opposite for gram-positive and anaerobes. The results show that the intestinal development, digestive and absorptive capacity, resistance to oxidative stress, and microbial diversity of the wild population of B. tsinlingensis Li, 1966 were higher than those of the second filial generation, but the intestinal flora-induced pathogenicity for the second generation was relatively low.

  • [1]
    NOAILLAC D J, GAS N. Structure and function of the intestinal epithelial cells in the perch (Perca fluviatillis L.)[J]. Anat Rec, 1979, 195(4): 621-627. doi: 10.1002/ar.1091950405
    [2]
    SUKKHEE N, SENARAT S, CHAROENPHON N, et al. Histological structure of the digestive tract, liver, and pancreas of Ambassis nalua (Hamilton, 1822) with ultrastructural details of the gastric gland[J]. J Fish Biol, 2024, 104(1): 113-124. doi: 10.1111/jfb.15566
    [3]
    XU A, SHANG G J, LI Z, et al. Effects of dietary asafoetida (Ferula sinkiangensis K. M. Shen) levels on feeding attraction activity, growth performance, healthiness, and digestive enzyme activity in juvenile Lateolabrax japonicus[J]. Fish Physiol Biochem, 2020, 46(6): 1991-2003. doi: 10.1007/s10695-020-00849-x
    [4]
    PERVIN M A, JAHAN H, AKTER R, et al. Appraisal of different levels of soybean meal in diets on growth, digestive enzyme activity, antioxidation, and gut histology of tilapia (Oreochromis niloticus)[J]. Fish Physiol Biochem, 2020, 46(4): 1397-1407. doi: 10.1007/s10695-020-00798-5
    [5]
    PAROLINI M, IACOBUZIO R, DE FELICE B, et al. Age-and sex-dependent variation in the activity of antioxidant enzymes in the brown trout (Salmo trutta)[J]. Fish Physiol Biochem, 2019, 45(1): 145-154. doi: 10.1007/s10695-018-0545-6
    [6]
    AMENYOGBE E, LUO J, FU W J, et al. Effects of autochthonous strains mixture on gut microbiota and metabolic profile in cobia (Rachycentron canadum)[J]. Sci Rep, 2022, 12(1): 17410. doi: 10.1038/s41598-022-19663-x
    [7]
    LIU C, ZHAO L P, SHEN Y Q. A systematic review of advances in intestinal microflora of fish[J]. Fish Physiol Biochem, 2021, 47(6): 2041-2053. doi: 10.1007/s10695-021-01027-3
    [8]
    李思忠. 陕西太白山细鳞鲑的一新亚种[J]. 动物分类学报, 1966, 3(1): 92-94.
    [9]
    李思忠. 中国蛙科鱼类地理分布的探讨[J]. 动物学杂志, 1984, 15(1): 34-37.
    [10]
    ZHAO Y H , ZHANG C G. Threatened fishes of the world: Brachymystax lenok tsinlingensis Li, 1966 (Salmonidae)[J]. Environ Biol Fishes, 2009, 86(1): 11-12. doi: 10.1007/s10641-008-9337-7
    [11]
    XING Y C, LYU B B, YE E Q, et al. Revalidation and redescription of Brachymystax tsinlingensis Li, 1966 (Salmoniformes: Salmonidae) from China[J]. Zootaxa, 2015, 22(3962): 191-205.
    [12]
    蒙彦晓, 王桂华, 熊冬梅, 等. 基于形态学差异探讨秦岭细鳞鲑亚种有效性问题[J]. 水生生物学报, 2018, 42(3): 550-560.
    [13]
    熊冬梅, 蒙彦晓, 张鑫淼, 等. 基于线粒体控制区和微卫星标记探讨秦岭细鳞鲑物种有效性[J]. 水生生物学报, 2023, 47(5): 809-818.
    [14]
    XIONG D M, MENG Y X, YU H R, et al. Structure and ultrastructure studies of the digestive tract of the endangered Qinling lenok (Brachymystax tsinlingensis Li, 1966)[J]. Iran J Fish Sci, 2019(18): 981-995.
    [15]
    吴金明, 杨焕超, 邵俭, 等. 秦岭细鳞鲑栖息地环境特征研究[J]. 水生生物学报, 2017, 41(1): 214-219.
    [16]
    张建禄, 边坤, 马建林, 等. 秦岭甘峪河鱼类资源现状及保护评析[J]. 水生态学杂志, 2019, 40(1): 30-34.
    [17]
    杨丹丹, 李君轶, 吴金明, 等. 千河流域秋季水生生物资源调查研究[J]. 水产学杂志, 2021, 34(4): 49-58.
    [18]
    乐佩琦, 陈宜瑜. 中国濒危动物红皮书 (鱼类)[M]. 北京: 科学出版社, 1998: 35-37.
    [19]
    孙庆亮. 秦岭细鳞鲑保护生物学研究[D]. 武汉: 华中农业大学, 2014: 44-94.
    [20]
    邵俭, 危起伟, 吴金明, 等. 一种秦岭细鳞鲑人工繁殖方法: CN201410319444.1[P]. 2016-04-06.
    [21]
    SHAO J, LUO W, WEI Q W, et al. Assignment of parentage by microsatellite analysis in the endangered Brachymystax lenok tsinlingensis (Salmonidae)[J]. Aquat Biol, 2017, 26(6): 69-73.
    [22]
    邵俭, 危起伟, 王丰, 等. 一种秦岭细鳞鲑苗种的培育方法: CN201610036343.2[P]. 2018-06-15.
    [23]
    SHAO J, XIONG D M, CHU Z P, et al. Population differentiation and genetic diversity of endangered Brachymystax tsinlingensis Li between Yangtze River and Yellow River in China based on mtDNA[J]. Mitochondrial DNA A, 2019, 30(5): 695-701. doi: 10.1080/24701394.2019.1572130
    [24]
    李彦亮, 周晓华, 赵依民, 等. 中国水生野生动物保护蓝皮书[M]. 北京: 海洋出版社, 2021: 106-114.
    [25]
    GUO X C, CHU Z P, SONG R Q, et al. Toxicity of common biocides used in aquaculture to embryos and larvae of Brachymystax tsinlingensis Li[J]. J Fish Biol, 2023, 104(2): 463-472.
    [26]
    张林, 兰开勇, 宋荣群, 等. 秦岭细鳞鲑稚鱼对底质颜色、光照强度及光色的选择行为[J]. 渔业科学进展, 2023, 44(4): 179-187.
    [27]
    卿素珠, 张为民, 强晓鸣, 等. 秦岭细鳞鲑消化系统的形态学观察[J]. 中国兽医学报, 2012, 32(6): 889-893.
    [28]
    黄曼曼, 邓百万, 谢修超, 等. 秦岭地区野生细鳞鲑肠道微生物多样性及产酶活性分析[J]. 动物学杂志, 2018, 53(1): 114-125.
    [29]
    MA F, MA R L, ZOU Y L, et al. Effect of astaxanthin on the antioxidant capacity and intestinal microbiota of tsinling lenok trout (Brachymystax lenok tsinlingensis)[J]. Mar Biotechnol, 2022, 24(6): 1125-1137. doi: 10.1007/s10126-022-10175-3
    [30]
    MA F, MA B H, ZHANG B X, et al. Disturbance of oxidation/antioxidant status and histopathological damage in tsinling lenok trout under acute thermal stress[J]. Trop Anim Health Prod, 2023, 55(5): 287. doi: 10.1007/s11250-023-03705-1
    [31]
    MA F, ZHAO L, MA R L, et al. High temperature stress induced oxidative stress, gut inflammation and disordered metabolome and microbiome in tsinling lenok trout[J]. Ecotoxicol Environ Safe, 2023, 266(1): 115607.
    [32]
    谭凤霞, 裴梦婷, 柴毅, 等. 抗菌肽与鱼类肠道健康研究进展[J]. 水产科学, 2020, 39(1): 135-142.
    [33]
    GU J, BAKKE A M, VALEN E C, et al. Bt-maize (MON810) and non-GM soybean meal in diets for Atlantic salmon (Salmo salar L.) juveniles-impact on survival, growth performance, development, digestive function, and transcriptional expression of intestinal immune and stress responses[J]. PLoS One, 2014, 9(6): e99932. doi: 10.1371/journal.pone.0099932
    [34]
    SAHLMANN C, GU J, KORTNER T M, et al. Ontogeny of the digestive system of Atlantic salmon (Salmo salar L.) and effects of soybean meal from start-feeding[J]. PLoS One, 2015, 10(4): e0124179. doi: 10.1371/journal.pone.0124179
    [35]
    NORLAND S, SAELE O, RONNESTAD I. Developmental stages of the ballan wrasse from first feeding through metamorphosis: cranial ossification and the digestive system[J]. J Anat, 2022, 241(2): 337-357. doi: 10.1111/joa.13686
    [36]
    GALAVIZ M A, LOPEZ L M, GARCIA GASCA A, et al. Digestive system development and study of acid and alkaline protease digestive capacities using biochemical and molecular approaches in totoaba (Totoaba macdonaldi) larvae[J]. Fish Physiol Biochem, 2015, 41(5): 1117-1130. doi: 10.1007/s10695-015-0073-6
    [37]
    左愈臻, 纪鹏, 武凡琳, 等. 秦岭细鳞鲑肠黏膜结构研究[J]. 中兽医学杂志, 2018(8): 8-9.
    [38]
    HAGHPARAST R J, MOGHANLOU K S, MOHSENI M, et al. Effect of dietary soybean lecithin on fish performance, hemato-immunological parameters, lipid biochemistry, antioxidant status, digestive enzymes activity and intestinal histomorphometry of pre-spawning Caspian brown trout (Salmo trutta caspius)[J]. Fish Shellfish Immunol, 2019, 91(8): 50-57.
    [39]
    SHEN Y W, LI H Y, ZHAO J L, et al. The digestive system of mandarin fish (Siniperca chuatsi) can adapt to domestication by feeding with artificial diet[J]. Aquaculture, 2021, 538(2): 736546.
    [40]
    HE G L, SUN H, LIAO R S, et al. Effects of herbal extracts (Foeniculum vulgare and Artemisia annua) on growth, liver antioxidant capacity, intestinal morphology and microorganism of juvenile largemouth bass, Micropterus salmoides[J]. Aquac Rep, 2022, 23(2): 101081.
    [41]
    谢雨桐, 朱喜锋, 李诗洋, 等. 黑水虻虫浆对杂交鳢血清免疫、抗氧化指标和肠道形态、菌群及抗病力的影响[J]. 动物营养学报, 2023, 35(8): 5297-5308.
    [42]
    LIU S T, CAI H W, LIU Y, et al. Effects of LED spectra on the growth and physiological mechanism of juvenile Sebastes schlegelii. Part I: growth, feeding and digestion and metabolism[J]. Aquaculture, 2024, 580(1): 740295.
    [43]
    JIAO F, ZHANG L, LIMBU S M, et al. A comparison of digestive strategies for fishes with different feeding habits: digestive enzyme activities, intestinal morphology, and gut microbiota[J]. Ecol Evol, 2023, 13(9): e10499. doi: 10.1002/ece3.10499
    [44]
    ASSAN D, KUEBUTORNYE F K A, HLORDZI V, et al. Effects of probiotics on digestive enzymes of fish (finfish and shellfish); status and prospects: a mini review[J]. Comp Biochem Physiol B, 2022, 257(1): 110653.
    [45]
    HONG J, ORTIZ J G, SEALEY W M, et al. Effects of dietary arachidonic acid supplementation in low fishmeal and fish oil-free diets on growth performance, inflammatory response, gut histology, and non-specific immunity in sub-adult rainbow trout, Oncorhynchus mykiss[J]. Aquaculture, 2024, 580(1): 740272.
    [46]
    XI J J, SHAO J, WANG Y, et al. Acute toxicity of triflumizole to freshwater green algae Chlorella vulgaris[J]. Pesticide Biochem Physiol, 2019, 158(15): 135-142.
    [47]
    YU L J, WEN H, JIANG M, et al. Effects of ferulic acid on intestinal enzyme activities, morphology, microbiome composition of genetically improved farmed tilapia (Oreochromis niloticus) fed oxidized fish oil[J]. Aquaculture, 2020, 528(15): 735543.
    [48]
    何娇娇, 王萍, 冯建, 等. 发酵豆粕对大黄鱼生长、肠道结构及肠道微生物菌群的研究[J]. 水生生物学报, 2018, 42(5): 919-928.
    [49]
    YUAN L, WANG L, LI Z H, et al. Antibiotic resistance and microbiota in the gut of Chinese four major freshwater carp from retail markets[J]. Environ Poll, 2019, 255(2): 113327.
    [50]
    GAJARDO K, RODILES A, KORTNER T M, et al. A high-resolution map of the gut microbiota in Atlantic salmon (Salmo salar): a basis for comparative gut microbial research[J]. Sci Rep, 2016, 3(6): 30893.
    [51]
    JONES J, DIBATTISTA J D, STAT M, et al. The microbiome of the gastrointestinal tract of a range-shifting marine herbivorous fish[J]. Front Microbiol, 2018, 28(9): 2000.
    [52]
    FALCINELLI S, PICCHIETTI S, RODILES A, et al. Lactobacillus rhamnosus lowers zebrafish lipid content by changing gut microbiota and host transcription of genes involved in lipid metabolism[J]. Sci Rep, 2015, 30(5): 9336.
    [53]
    BINDA C, LOPETUSO L R, RIZZATTI G, et al. Actinobacteria: a relevant minority for the maintenance of gut homeostasis[J]. Digest Liver Dis, 2018, 50(5): 421-428. doi: 10.1016/j.dld.2018.02.012
    [54]
    WANG J, CHEN H, TANG M. Community structure of gut bacteria of Dendroctonus armandi (Coleoptera: Curculionidae: Scolytinae) larvae during overwintering stage[J]. Sci Rep, 2017, 7(1): 14242. doi: 10.1038/s41598-017-14724-y
    [55]
    DING Q W, ZHANG Z, RAN C, et al. The hepatotoxicity of palmitic acid in zebrafish involves the intestinal microbiota[J]. J Nutr, 2018, 148(8): 1217-1228. doi: 10.1093/jn/nxy084
    [56]
    ZAFAR H, SAIER M H J R. Gut bacteroides species in health and disease[J]. Gut Microbes, 2021, 13(1): 1-20.
    [57]
    SHANG X J, WEI Y B, GUO X, et al. Dynamic changes of the microbial community and volatile organic compounds of the northern pike (Esox lucius) during storage[J]. Foods, 2023, 12(13): 2479. doi: 10.3390/foods12132479
    [58]
    曹海鹏, 温乐夫, 白金尊, 等. 中华绒螯蟹点状产气单胞菌的分离鉴定与药敏试验[J]. 动物医学进展, 2015, 36(8): 110-113.
    [59]
    QIU W H, LIU T, LIU X J, et al. Enrofloxacin induces intestinal microbiota-mediated immunosuppression in zebrafish[J]. Environ Sci Technol, 2022, 56(12): 8428-8437. doi: 10.1021/acs.est.1c08712
    [60]
    刘辉, 韦璐璐, 朱龙发, 等. 鞘氨醇单胞菌的研究进展[J]. 微生物学通报, 2023, 50(6): 2738-2752.
    [61]
    王巧煌, 林楠, 元丽花, 等. 大口黑鲈鲁氏耶尔森氏菌的分离鉴定、主要毒力基因及致病性研究[J]. 水产学报, 2022, 46(5): 825-835.
    [62]
    YE L, MUELLER O, BAGWELL J, et al. High fat diet induces microbiota-dependent silencing of enteroendocrine cells[J]. Elife, 2019, 8: e48479. doi: 10.7554/eLife.48479
    [63]
    宋健. 虹鳟源蜂房哈夫尼菌的鉴定及其致病性研究[D]. 哈尔滨: 东北农业大学, 2023: 5-8.
    [64]
    HOLBROOK S J. Species diversity patterns in some present and prehistoric rodent communities[J]. Oecologia, 1979, 44(3): 355-367. doi: 10.1007/BF00545240
    [65]
    SAJINA A M , NAIR S M, SUDHEESAN D, et al. Reconnoitre on ichthyofauna of Mahanadi River of India: shifting diversity down the river continuum and linking ecological traits with patterns in biodiversity[J]. Environ Sci Poll Res Inter, 2024, 31(4): 5684-5698.
    [66]
    KONONOVA S V, ZINCHENKO D V, MURANOVA T A, et al. Intestinal microbiota of salmonids and its changes upon introduction of soy proteins to fish feed[J]. Aquac Int, 2019, 27(1): 475-496.

Catalog

    Article views (252) PDF downloads (23) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return