Citation: | XU Shumin, QI Zhanhui, SHI Rongjun, LIU Yong, HAN Tingting, HUANG Honghui. Influence of mariculure on tempo-spatial distribution of nitrogen and phosphorus in subtropical zone: a case study of Shen'ao Bay[J]. South China Fisheries Science, 2019, 15(4): 29-38. DOI: 10.12131/20190049 |
We investigated the tempo-spatial variation of disovled inorganic nitrogen (DIN) and phosphate (PO4-P) in Shen'ao Bay that is a typical subtropical aquaculture bay. Besides, we studied the effects of large-scale aquaculture activities such as fish cage and shellfish raft on the tempo-spatial distribution of nutrients, and evaluated the potential limiting factors of the nutrients. The concentration and distribution of DIN and PO4-P showed obvious seasonal variation (DIN and PO4-P reached their maximum values in autumn and winter, respectively, and both reached their minimum values in summer). The DIN nutrients concentrations and N/P ratios in fish cage area in spring were lower than those in oyster-macroalgae culture area and the control area. However, in the other three seasons, the DIN and PO4-P concentrations and N/P ratios in fish cage area were higher than those in the other areas. There was no significant difference in the nitrogen and phosphorus concentrations as well as N/P ratios between oyster-macroalgae culture area and the control area in each season. Both DIN and PO4-P were higher than the theoretical threshold for phytoplankton growth, indicating that there was no absolute nutrient limitation. The N/P ratios in summer and winter were 13.6 and 13.1, respectively, which were lower than the Redfield ratio, indicating that there was potential N limitation during these seasons. The N/P ratios in spring and autumn were 16.6 and 19.0, respectively, indicating potential P limitation. The average seasonal ratio was 14.3, indicating that N was probably the most limiting nutrient in Shen'ao Bay. DIN was dominated by nitrate nitrogen (NO3-N) except for summer with percentages of 51.7%−92.7%, followed by ammonia nitrogen (NH4-N) with percentages of 5.2%−43.8%, and nitrite nitrogen (NO2-N) was lowest with percentages of 2.1%−27.2%, indicating that the thermodynamic equilibrium of N was reached. Compared with 2001, the concentrations of both DIN and PO4-P decreased, with the trophic level changing into poor from moderate. It is shown that the productivity level of Shen'ao Bay is still controlled by nitrogen, and the tempo-spatial distribution of nutrients reflects the impact of large-scale shellfish culture to a certain extent.
[1] |
ZEHR J P, KUDELA R M. Nitrogen cycle of the open ocean: from genes to ecosystems[J]. Ann Rev Mar Sci, 2010, 3(1): 197.
|
[2] |
STEVENS C J. Nitrogen in the environment[J]. Science, 2019, 363(6427): 578-580. doi: 10.1126/science.aav8215
|
[3] |
REDFIELD A C. The biological control of chemical factors in the environment[J]. Sci Prog, 1960, 11: 150-170.
|
[4] |
LAGUS A, SUOMELA J, WEITHOFF G, et al. Species-specific differences in phytoplankton responses to N and P enrichments and the N: P ratio in the Archipelago Sea, northern Baltic Sea[J]. J Plankton Res, 2004, 33(5/6): 529-551.
|
[5] |
GIBBS M T. Sustainability performance indicators for suspended bivalve aquaculture activities[J]. Ecol Indic, 2007, 7(1): 94-107. doi: 10.1016/j.ecolind.2005.10.004
|
[6] |
周毅频, 李绪录, 夏华永. 大鹏湾海水中氮和磷的分布变化[J]. 广东海洋大学学报, 2011, 31(3): 50-55. doi: 10.3969/j.issn.1673-9159.2011.03.009
|
[7] |
李凡. 海岸带陆海相互作用(LOICZ)研究及我们的策略[J]. 地球科学进展, 1996, 11(1): 19-23. doi: 10.3321/j.issn:1001-8166.1996.01.006
|
[8] |
刘瑞玉, 胡敦欣. 中国的海岸带陆海相互作用(LOICZ)研究[J]. 地学前缘, 1997(Z1): 198.
|
[9] |
BOUWMAN L, GOLDEWIJK K K, van der HOEK K W, et al. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900−2050 period[J]. Proc Natl Acad Sci USA, 2013, 110(52): 20882-20887. doi: 10.1073/pnas.1012878108
|
[10] |
VANNI M J, MCINTYRE P B. Predicting nutrient excretion of aquatic animals with metabolic ecology and ecological stoichiometry: a global synthesis[J]. Ecology, 2016, 97(12): 3460-3471. doi: 10.1002/ecy.1582
|
[11] |
VERDEGEM M C. Nutrient discharge from aquaculture operations in function of system design and production environment[J]. Rev Aquacult, 2013, 5(3): 158-171.
|
[12] |
BERMAN T, BRONK D. Dissolved organic nitrogen: a dynamic participant in aquatic ecosystems[J]. Aquat Microbial Ecol, 2003, 31(3): 279-305.
|
[13] |
魏皓, 赵亮, 原野, 等. 桑沟湾水动力特征及其对养殖容量影响的研究——观测与模型[J]. 渔业科学进展, 2010, 31(4): 65-71. doi: 10.3969/j.issn.1000-7075.2010.04.009
|
[14] |
史洁, 魏皓. 半封闭高密度筏式养殖海域水动力场的数值模拟[J]. 中国海洋大学学报(自然科学版), 2009, 39(6): 1181-1187.
|
[15] |
杜虹, 郑兵, 陈伟洲, 等. 深澳湾海水养殖区水化因子的动态变化与水质量评价[J]. 海洋与湖沼, 2010, 41(6): 816-823.
|
[16] |
彭璇, 马胜伟, 陈海刚, 等. 夏季柘林湾-南澳岛海洋牧场营养盐的空间分布及其评价[J]. 南方水产科学, 2014, 10(6): 27-35. doi: 10.3969/j.issn.2095-0780.2014.06.004
|
[17] |
王亮根, 杜飞雁, 陈丕茂, 等. 南澳岛北部海域浮游动物生态学特征及水团影响[J]. 南方水产科学, 2016, 12(5): 23-33. doi: 10.3969/j.issn.2095-0780.2016.05.004
|
[18] |
郭卫东, 章小明. 中国近岸海域潜在性富营养化程度的评价[J]. 应用海洋学学报, 1998(1): 64-70.
|
[19] |
WANG W L, MOORE J K, MARTINY A C, et al. Convergent estimates of marine nitrogen fixation[J]. Nature, 2019, 566(7743): 205. doi: 10.1038/s41586-019-0911-2
|
[20] |
MOORE C M, MILLS M M, ARRIGO K R, et al. Processes and patterns of oceanic nutrient limitation[J]. Nat Geosci, 2013, 6(9): 701-710. doi: 10.1038/ngeo1765
|
[21] |
KRISHNAMURTHY A, MOORE J K, MAHOWALD N, et al. Impacts of atmospheric nutrient inputs on marine biogeochemistry[J]. J Geophys Res Biogeosci, 2010, 115(G1): 93-101.
|
[22] |
HOEGH-GULDBERG O, BRUNO J F. The impact of climate change on the world's marine ecosystems[J]. Science, 2010, 328(5985): 1523-1528. doi: 10.1126/science.1189930
|
[23] |
马媛, 魏巍, 夏华永, 等. 珠江口伶仃洋海域营养盐的历史变化及影响因素研究[J]. 海洋学报(中文版), 2009, 31(2): 69-77. doi: 10.3321/j.issn:0253-4193.2009.02.010
|
[24] |
MICHELI F, HALPERN B S, WALBRIDGE S A, et al. Cumulative human impacts on Mediterranean and Black Sea marine ecosystems: assessing current pressures and opportunities[J]. PLoS One, 2013, 8(12): e79889. doi: 10.1371/journal.pone.0079889
|
[25] |
CERCO C F, NOEL M R. Can oyster restoration reverse cultural eutrophication in Chesapeake Bay?[J]. Estuar Coasts, 2007, 30(2): 331-343. doi: 10.1007/BF02700175
|
[26] |
SHU T, WEN Y, YONGSEN L U, et al. Research on material balance of N and P in cage culture: take example for cage culture in Yaling Bay, Guangdong[J]. Acta Scientiae Circumstantiae, 2004, 24(6): 1046-1052.
|
[27] |
KELLOGG M L, SMYTH A R, LUCKENBACH M W, et al. Use of oysters to mitigate eutrophication in coastal waters[J]. Estuar Coast Shelf Sci, 2014, 151(5): 156-168.
|
[28] |
毛玉泽, 李加琦, 薛素燕, 等. 海带养殖在桑沟湾多营养层次综合养殖系统中的生态功能[J]. 生态学报, 2018, 38(9): 1-7. doi: 10.3969/j.issn.1673-1182.2018.09.001
|
[29] |
AJJABI L C, ABAAB M, SEGNI R. The red macroalga Gracilaria verrucosa in co-culture with the Mediterranean mussels Mytilus galloprovincialis: productivity and nutrient removal performance[J]. Aquacult Int, 2018, 26(1): 253-266. doi: 10.1007/s10499-017-0206-2
|
[30] |
GRANT J B C. A numerical model of flow modification induced by suspended aquaculture in a Chinese bay[J]. Can J Fish Aquat Sci, 2001, 58(5): 1003-1011. doi: 10.1139/f01-027
|
[31] |
刘慧, 方建光, 董双林, 等. 莱州湾和桑沟湾养殖海区主要营养盐的周年变动及限制因子[J]. 中国水产科学, 2003, 10(3): 227-234. doi: 10.3321/j.issn:1005-8737.2003.03.010
|
[32] |
张继红, 蒋增杰, 王巍, 等. 桑沟湾营养盐时空分布及营养盐限制分析[J]. 渔业科学进展, 2010, 31(4): 16-25. doi: 10.3969/j.issn.1000-7075.2010.04.003
|
[33] |
毛玉泽, 杨红生, 周毅, 等. 龙须菜(Gracilaria lemaneiformis)的生长、光合作用及其对扇贝排泄氮磷的吸收[J]. 生态学报, 2006, 26(10): 3225-3231. doi: 10.3321/j.issn:1000-0933.2006.10.009
|
[34] |
ZHOU Y, YANG H S, HU H Y, et al. Bioremediation potential of the macroalga Gracilaria lemaneiformis (Rhodophyta) integrated into fed fish culture in coastal waters of North China[J]. Aquaculture, 2006, 252(2/3/4): 264-276.
|
[35] |
XU Y J, FANG J, WEI W. Application of Gracilaria lichenoides (Rhodophyta) for alleviating excess nutrients in aquaculture[J]. J Appl Phycol, 2008, 20(2): 199-203. doi: 10.1007/s10811-007-9219-y
|
[36] |
XU Z G, ZOU D H, GAO K S. Effects of elevated CO2 and phosphorus supply on growth, photosynthesis and nutrient uptake in the marine macroalga Gracilaria lemaneiformis (Rhodophyta)[J]. Botanica Marina, 2010, 53(2): 123-129.
|
[37] |
DUAN Y, YANG N, HU M, et al. Growth and nutrient uptake of Gracilaria lemaneiformis under different nutrient conditions with implications for ecosystem services: a case study in the laboratory and in an enclosed mariculture area in the East China Sea[J]. Aquat Botany, 2019, 153: 73-80. doi: 10.1016/j.aquabot.2018.11.012
|
[38] |
谢琳萍, 蒲新明, 孙霞, 等. 荣成湾营养盐的时空分布特征及其影响因素分析[J]. 海洋通报, 2013, 32(1): 19-27.
|
[39] |
MAO Y, ZHOU Y, YANG H, et al. Seasonal variation in metabolism of cultured Pacific oyster, Crassostrea gigas, in Sanggou Bay, China[J]. Aquaculture, 2006, 253(1): 322-333.
|
[40] |
贾后磊, 温琰茂, 舒廷飞. 哑铃湾网箱养殖水环境中的营养盐含量及特征[J]. 海洋环境科学, 2003, 22(3): 12-15. doi: 10.3969/j.issn.1007-6336.2003.03.003
|
[41] |
黄显兵, 杜虹, 黄洪辉, 等. 深澳湾表层底质沉积物中凯氏氮和总磷的时空分布及与周边地区的比较[J]. 中国农学通报, 2011, 27(6): 333-337.
|
[42] |
JUSTIC D, RABALAIS N N, TURNER R E. Stoichiometric nutrient balance and origin of coastal eutrophication[J]. Mar Pollut Bull, 1995, 30(1): 41-46. doi: 10.1016/0025-326X(94)00105-I
|
[43] |
VITOUSEK P M, HOWARTH R W. Nitrogen limitation on land and in the sea: how can it occur?[J]. Biogeochemistry, 1991, 13(2): 87-115.
|
[44] |
郝林华, 孙丕喜, 郝建民, 等. 桑沟湾海域叶绿素a的时空分布特征及其影响因素研究[J]. 生态环境学报, 2012, 21(2): 338-345. doi: 10.3969/j.issn.1674-5906.2012.02.024
|
[45] |
REDFIELD A C, KETCHUM B H, RICHARDS F A. The influence of organisms on the composition of the sea water[J]. Intersci Publishers, 1963, 24(6): 26-27.
|
[46] |
WEBER T S, DEUTSCH C. Ocean nutrient ratios governed by plankton biogeography[J]. Nature, 2010, 467(7315): 550-554. doi: 10.1038/nature09403
|
[47] |
SCHINDLER D W. Eutrophication and recovery in experimental lakes: implications for lake management[J]. Science, 1974, 184(4139): 897-899. doi: 10.1126/science.184.4139.897
|
[48] |
ZEHR J P. Nitrogen fixation by marine cyanobacteria[J]. Trends Microbiol, 2011, 19(4): 162-173. doi: 10.1016/j.tim.2010.12.004
|
[49] |
彭欣, 宁修仁, 孙军, 等. 南海北部浮游植物生长对营养盐的响应[J]. 生态学报, 2006, 26(12): 3959-3968. doi: 10.3321/j.issn:1000-0933.2006.12.006
|
[50] |
FREDE T T, LI Z U, FEREIDOUN R. P limitation of heterotrophic bacteria and phytoplankton in the northwest Mediterranean[J]. Limnol Oceanogr, 1998, 43(1): 88-94.
|
[51] |
ZOHARY T, ROBARTS R D. Experimental study of microbial P limitation in the eastern Mediterranean[J]. Limnol Oceanogr, 1998, 43(3): 387-395. doi: 10.4319/lo.1998.43.3.0387
|
[52] |
KIRKKALA T, HELMINEN H, ERKKILA A. Variability of nutrient limitation in the Archipelago Sea, SW Finland[J]. Hydrobiologia, 1998, 363(1/2/3): 117-126.
|
[53] |
ALLEN J I, BLACKFORD J C, RADFORD P J. An 1-D vertically resolved modelling study of the ecosystem dynamics of the middle and southern Adriatic Sea[J]. J Mar Syst, 1998, 18(1/2/3): 265-286.
|
[54] |
李纯厚, 徐姗楠, 杜飞雁, 等. 大亚湾生态系统对人类活动的响应及健康评价[J]. 中国渔业质量与标准, 2015, 5(1): 1-10.
|
[55] |
徐东会, 陈碧鹃, 江涛, 等. 桑沟湾养殖海域营养盐时空分布特征及富营养化评价[J]. 渔业科学进展, 2017, 38(3): 1-11.
|
[56] |
周凯. 2000~2001年粤东大规模增养殖区柘林湾和深澳湾的生态学研究[D]. 广州: 暨南大学, 2002: 96.
|
[57] |
JONES A B, PRESTON N P, DENNISON W C. The efficiency and condition of oysters and macroalgae used as biological filters of shrimp pond effluent[J]. Aquacult Res, 2015, 33(1): 1-19.
|
[58] |
STADMARK J, CONLEY D J. Mussel farming as a nutrient reduction measure in the Baltic Sea: consideration of nutrient biogeochemical cycles[J]. Mar Pollut Bull, 2011, 62(7): 1385-1388. doi: 10.1016/j.marpolbul.2011.05.001
|
[59] |
丘耀文. 珠江口水体的三氮特征[J]. 热带海洋学报, 1992(3): 84-88.
|
[60] |
郑爱榕, 沈海维, 刘景欣, 等. 大亚湾海域低营养盐维持高生产力的机制探讨Ⅰ[J]. 海洋科学, 2001, 25(11): 48-52. doi: 10.3969/j.issn.1000-3096.2001.11.014
|
[61] |
舒廷飞, 温琰茂, 汤叶涛. 养殖水环境中氮的循环与平衡[J]. 水产科学, 2002, 21(2): 30-34. doi: 10.3969/j.issn.1004-2091.2002.02.015
|
[62] |
周毅, 杨红生, 何义朝, 等. 四十里湾几种双壳贝类及污损动物的氮、磷排泄及其生态效应[J]. 海洋与湖沼, 2002, 33(4): 424-431. doi: 10.3321/j.issn:0029-814X.2002.04.012
|
[63] |
GLIBERT P M, WILKERSON F P, DUGDALE R C, et al. Pluses and minuses of ammonium and nitrate uptake and assimilation by phytoplankton and implications for productivity and community composition, with emphasis on nitrogen-enriched conditions[J]. Limnol Oceanogr, 2016, 61(1): 165-197. doi: 10.1002/lno.10203
|
1. |
张凯,张麟,彭凌风,陈鑫,刘合刚,胡志刚. 基于性别差异的少棘巨蜈蚣蛋白组和转录组联合分析. 时珍国医国药. 2024(04): 892-898 .
![]() | |
2. |
韩财安,李安东,周美玉,廖怀生. 小龙虾幼苗培育关键技术. 江西水产科技. 2022(05): 30-31+34 .
![]() |