Citation: | YAO Tuo, LU Jie, YE Lingtong, CHEN Huasheng, WANG Jiangyong. Molecular characterization and expression pattern analysis of a defensin (HdDef1) from small abalone (Haliotis diversicolor)[J]. South China Fisheries Science, 2019, 15(6): 1-8. DOI: 10.12131/20190045 |
Defensin is one of the most important antimicrobial peptides (AMPs) that participate in invertebrate innate immunity against invading pathogens. In the present study, a novel defensin was identified in small abalone (Haliotis diversicolor) that was denoted as HdDef1 by using RNA-seq and RACE techniques. The HdDef1 cDNA contained a 201 bp open reading frame (ORF) encoding 66 amino acids including a signal peptide of 18 amino acids and a mature peptide of 48 amino acids. The mature peptide of HdDef1 shared common features of AMPs, such as lower molecular mass, net positive charge (+1) and high hydrophobic residue ratio (45%). In addition, six cysteines in the mature peptide were arranged in the pattern of C-X16-C-X3-C-X9-C-X4-C-X1-C and stabilized the α-helix/β-sheet motif (CSαβ) with three disulfide bonds (C1-C4, C2-C5 and C3-C6) in the predicted tertiary structure. Moreover, by comparision with the similar three-dimensional structure of Anopheles gambiae defensin and phylogenetic analysis, it is suggested that HdDef1 might be a new member of the arthropod defensin family. Quantitative real-time PCR analysis reveals that HdDef1 transcripts were expressed constitutively in intestine, head, gill, hepatopancreas, mantle and foot, with the highest level in hepatopancreas. After being challenged with Vibrio harveyi, HdDef1 transcripts were induced significantly in hepatopancreas. The results indicate that HdDef1 might have an important function in host defense against invasive pathogenic bacteria, but its antimicrobial activity at protein level needs further study.
[1] |
吴宁, 陈梦玫, 王素芳. 贝类免疫机制的研究进展[J]. 药物生物技术, 2017, 24(1): 68-71.
|
[2] |
PARISI M G, VIZZINI A, TOUBIANA M, et al. Identification, cloning and environmental factors modulation of a αβ defensin from the Lessepsian invasive mussel Brachidontes pharaonis (Bivalvia: Mytilidae)[J]. Invertebr Surviv J, 2015, 12(12): 264-273.
|
[3] |
ZHANG L B, YANG D L, WANG Q, et al. A defensin from clam Venerupis philippinarum: molecular characterization, localization, antibacterial activity, and mechanism of action[J]. Dev Comp Immunol, 2015, 51(1): 29-38. doi: 10.1016/j.dci.2015.02.009
|
[4] |
孙敬敬, 刘慧慧, 周世权, 等. 一种新型贻贝抗菌肽的分离纯化及鉴定[J]. 水生生物学报, 2014, 38(3): 563-570. doi: 10.7541/2014.79
|
[5] |
GERDOL M, de MORO G, MANFRIN C, et al. Big defensins and mytimacins, new AMP families of the Mediterranean mussel Mytilus galloprovincialis[J]. Dev Comp Immunol, 2012, 36(2): 390-399. doi: 10.1016/j.dci.2011.08.003
|
[6] |
QIN C L, HUANG W, ZHOU S Q, et al. Characterization of a novel antimicrobial peptide with chiting-biding domain from Mytilus coruscus[J]. Fish Shellfish Immunol, 2014, 41(2): 362-370. doi: 10.1016/j.fsi.2014.09.019
|
[7] |
宫延斌, 秦传利, 石戈, 等. 厚壳贻贝抗菌肽mytichitin-CB的固相化学合成、复性及功能[J]. 浙江海洋大学学报(自然科学版), 2018, 37(1): 8-13.
|
[8] |
JENSSEN H, HAMILL P, HANCOCK R E. Peptide antimicrobial agents[J]. Clin Microbiol Rev, 2006, 19(3): 491-511. doi: 10.1128/CMR.00056-05
|
[9] |
燕晓翠, 杨春蕾, 姚大为, 等. 抗菌肽的国内外研究进展[J]. 天津农业科学, 2017, 23(5): 35-41. doi: 10.3969/j.issn.1006-6500.2017.05.008
|
[10] |
BACHÈRE E, ROSA R D, SCHMITT P, et al. The new insights into the oyster antimicrobial defense: cellular, molecular and genetic view[J]. Fish Shellfish Immunol, 2015, 46(1, SI): 50-64. doi: 10.1016/j.fsi.2015.02.040
|
[11] |
XU W, FAISAL M. Defensin of the zebra mussel (Dreissena polymorpha): molecular structure, in vitro expression, antimicrobial activity, and potential functions[J]. Mol Immunol, 2010, 47(11/12): 2138-2147.
|
[12] |
PENG K, WANG J H, SHENG J Q, et al. Molecular characterization and immune analysis of a defensin from freshwater pearl mussel, Hyriopsis schlegelii[J]. Aquaculture, 2012, 334: 45-50.
|
[13] |
WANG Y T, ZENG Z Y, ZHANG X H, et al. Identification and characterization of a novel defensin from Asian green mussel Perna viridis[J]. Fish Shellfish Immunol, 2018, 74: 242-249. doi: 10.1016/j.fsi.2017.12.029
|
[14] |
GONZALEZ M, GUEGUEN Y, DESSERRE G, et al. Molecular characterization of two isoforms of defensin from hemocytes of the oyster Crassostrea gigas[J]. Dev Comp Immunol, 2007, 31(4): 332-339. doi: 10.1016/j.dci.2006.07.006
|
[15] |
ZHANG Y B, CUI P F, WANG Y S, et al. Identification and bioactivity analysis of a newly identified defensin from the oyster Magallana gigas[J]. Dev Comp Immunol, 2018, 85: 177-187. doi: 10.1016/j.dci.2018.04.014
|
[16] |
王鹤, 胡宝庆, 文春根, 等. 褶纹冠蚌防御素基因特征与表达[J]. 中国水产科学, 2013, 20(6): 1188-1196.
|
[17] |
JIANG Q R, SHI L Y, KE C H, et al. Identification and characterization of Vibrio harveyi associated with diseased abalone Haliotis diversicolor[J]. Dis Aquat Organ, 2013, 103(2): 133-139. doi: 10.3354/dao02572
|
[18] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method[J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262
|
[19] |
张果苹, 汪桂玲, 郭诗照, 等. 背角无齿蚌抗菌肽theromacin基因cDNA全序列克隆及表达分析[J]. 水产学报, 2014, 38(5): 662-670.
|
[20] |
de ZOYSA M, NIKAPITIYA C, WHANG I I, et al. Abhisin: a potential antimicrobial peptide derived from histone H2A of disk abalone (Haliotis discus discus)[J]. Fish Shellfish Immunol, 2009, 27(5): 639-646. doi: 10.1016/j.fsi.2009.08.007
|
[21] |
ARENAS G, GUZMÁN F, CÁRDENAS C, et al. A novel antifungal peptide designed from the primary structure of a natural antimicrobial peptide purified from Argopecten purpuratus hemocytes[J]. Peptides, 2009, 30(8): 1405-1411. doi: 10.1016/j.peptides.2009.05.019
|
[22] |
TASSANAKAJON A, SOMBOONWIWAT K, AMPARYUP P. Sequence diversity and evolution of antimicrobial peptides in invertebrates[J]. Dev Comp Immunol, 2015, 48(2, SI): 324-341. doi: 10.1016/j.dci.2014.05.020
|
[23] |
BULET P, STÖCKLIN R, MENIN L. Anti-microbial peptides: from invertebrates to vertebrates[J]. Immunol Rev, 2004, 198(1): 169-184. doi: 10.1111/j.0105-2896.2004.0124.x
|
[24] |
ZHU S, GAO B, TYTGAT J. Phylogenetic distribution, functional epitopes and evolution of the CSαβ superfamily[J]. Cell Mol Life Sci, 2005, 62(19-20): 2257-2269. doi: 10.1007/s00018-005-5200-6
|
[25] |
de ZOYSA M, WHANG I, LEE Y, et al. Defensin from disk abalone Haliotis discus discus: molecular cloning, sequence characterization and immune response against bacterial infection[J]. Fish Shellfish Immunol, 2010, 28(2): 261-266. doi: 10.1016/j.fsi.2009.11.005
|
[26] |
ALLAM B, ESPINOSA E P. Bivalve immunity and response to infections: are we looking at the right place?[J]. Fish Shellfish Immunol, 2016, 53(SI): 4-12.
|
[27] |
YANG J Q, LUO J F, ZHENG H P, et al. Cloning of a big defensin gene and its response to Vibrio parahaemolyticus challenge in the noble scallop Chlamys nobilis (Bivalve: Pectinidae)[J]. Fish Shellfish Immunol, 2016, 56: 445-449. doi: 10.1016/j.fsi.2016.07.030
|
[28] |
MITTA G, VANDENBULCKE F, HUBERT F, et al. Mussel defensins are synthesised and processed in granulocytes then released into the plasma after bacterial challenge[J]. J Cell Sci, 1999, 112(23): 4233-4242.
|
[29] |
IWANAGA S, LEE B L. Recent advances in the innate immunity of invertebrate animals[J]. J Biochem Mol Biol, 2005, 38(2): 128-150.
|
[30] |
JOHANSSON M W, KEYSER P, SRITUNYALUCKSANA K, et al. Crustacean haemocytes and haematopoiesis[J]. Aquaculture, 2000, 191(1/2/3): 45-52.
|
[31] |
SEO J K, CRAWFORD J M, STONE K L, et al. Purification of a novel arthropod defensin from the American oyster, Crassostrea virginica[J]. Biochem Biophys Res Commun, 2005, 338(4): 1998-2004. doi: 10.1016/j.bbrc.2005.11.013
|
[32] |
崔旭. 太平洋牡蛎防御素在毕赤酵母中的重组表达及其抑菌活性[J]. 生物工程学报, 2019, 35(1): 91-101.
|
[33] |
GUEGUEN Y, HERPIN A, AUMELAS A, et al. Characterization of a defensin from the oyster Crassostrea gigas recombinant production, folding, solution structure, antimicrobial activities, and gene expression[J]. J Biol Chem, 2006, 281(1): 313-323. doi: 10.1074/jbc.M510850200
|
[34] |
WANG Q, ZHANG L B, YANG D L, et al. Molecular diversity and evolution of defensins in the manila clam Ruditapes philippinarum[J]. Fish Shellfish Immunol, 2015, 47(1): 302-312. doi: 10.1016/j.fsi.2015.09.008
|
1. |
陈茂森,黄晟,于刚,赖世钦,蔡冰娜,陈华,邓琬波,唐科,杨文华,王琴,肖更生,潘剑宇,李骏. 不同脱腥方法对薛氏海龙肽粉的脱腥效果比较. 南方水产科学. 2025(01): 1-13 .
![]() | |
2. |
李瑞丽,赵俊俊,戴水平,邹恩凯,刘语煊,胡亚宁,梁淼,张峻松. 基于HS-SPME-GC-MS和电子鼻技术分析烘焙温度对菊苣根提取物挥发性成分的影响. 食品工业科技. 2025(08): 311-321 .
![]() | |
3. |
邹丰,王楼. 智能感官技术在水产品检测中的应用进展. 江西水产科技. 2024(01): 20-26 .
![]() | |
4. |
张权,李金林,胡明明,彭斌,钟比真,涂宗财. 基于电子鼻和溶剂辅助风味蒸发-气相色谱-质谱联用技术分析调味小龙虾挥发性风味特征差异. 食品与发酵工业. 2024(08): 242-252 .
![]() | |
5. |
刘美娇,黎铸毅,陈秋翰,杨学博,徐颖怡,刘寿春,钟赛意,洪鹏志,朱春华. 酶解-美拉德反应制备金鲳鱼调味基料的工艺研究及风味分析. 中国调味品. 2024(06): 83-90+118 .
![]() | |
6. |
杨学博,陈秋翰,刘寿春,刘美娇,黎铸毅,周春霞,洪鹏志. 基于气相色谱-离子迁移谱和偏最小二乘判别分析技术分析酵母-藿香复合对罗非鱼脱腥效果的影响. 食品与发酵工业. 2024(12): 319-326 .
![]() | |
7. |
伍芬芬,沙小梅,舒圣,张权,曾心怡,胡姿姿. 糖基化反应对鱼蛋白胶挥发性风味及凝胶性能的影响. 食品工业科技. 2024(18): 103-111 .
![]() | |
8. |
普明斌,胡广地,孙翰昌,张奇斌,邓雅心. 基于GC-MS分析淡水产品风味物质研究进展. 农产品加工. 2024(22): 105-108+113 .
![]() | |
9. |
卢辉,罗源,龚钰雯,宋泳鑫,李官丽,罗杨合,黎小椿. 贺州香芋分段式微波真空干燥工艺及风味研究. 食品与机械. 2024(12): 16-24 .
![]() | |
10. |
胡海敏,田佳乐,孙思霖,聂佳莹,何彬彬,丹彤. 固相微萃取-气相色谱-质谱结合电子鼻技术分析发酵乳中挥发性风味物质. 微生物学通报. 2023(01): 273-288 .
![]() | |
11. |
刘建华,朱荣荣,曾倩华,唐炜,丁玉庭. 基于SPME-GC-MS和电子鼻分析臭氧-流态冰处理对大黄鱼风味的影响. 食品科学技术学报. 2023(01): 154-162 .
![]() | |
12. |
韦丽娜,李来好,郝淑贤,黄卉,杨贤庆,相欢,赵永强,岑剑伟,魏涯. 渗透处理对冷冻干燥罗非鱼肉品质和肌原纤维蛋白的影响. 南方水产科学. 2023(02): 133-141 .
![]() | |
13. |
冷坪蔚,梅议文,芦慧勤,秦斐,张玉,王立娜,王琳琳. 食用菌粉对猪肉肠冷藏过程中品质及挥发性风味物质的影响. 食品工业科技. 2023(13): 356-366 .
![]() | |
14. |
张泽伟,董春雨,吉宏武,张迪,刘书成,苏伟明. 基于层次分析法优化凡纳滨对虾(Penaeus vannamei)热风干燥工艺. 食品与发酵工业. 2023(15): 193-200 .
![]() | |
15. |
刘格格,毕金峰,苟敏,吕健,吴昕烨,陈芹芹. 基于GC-MS及电子鼻技术结合化学计量法表征8种白桃关键香气的差异. 食品科学. 2023(18): 277-285 .
![]() | |
16. |
徐文,余小贞,张雪儿,杜沁岭,何贵萍,贾冬英. 基于电子鼻和GC-MS分析3种市售大豆组织蛋白中挥发性豆腥味物质. 中国调味品. 2022(08): 145-149 .
![]() | |
17. |
徐远芳,张祺玲,黄高柳,周毅吉,郭峰,李文革,杨常林,彭玲. 电子鼻结合HS-SPME-GC-MS分析辐照对甲鱼预制菜挥发性风味成分的影响. 核农学报. 2022(10): 1953-1963 .
![]() | |
18. |
郝淑贤,黄卉,李来好,吴燕燕,相欢,魏涯,岑剑伟,赵永强. 宰前预冷联合微冻对罗非鱼片品质的影响. 广东海洋大学学报. 2022(06): 11-16 .
![]() |