LIU Chunxiao, LÜ Weiqun, YANG Zhigang, CHEN Aqin. TGF-β/Smad signaling pathway responding to photoperiod for participation in regulation of zebrafish ovarian development[J]. South China Fisheries Science, 2019, 15(3): 68-75. DOI: 10.12131/20180286
Citation: LIU Chunxiao, LÜ Weiqun, YANG Zhigang, CHEN Aqin. TGF-β/Smad signaling pathway responding to photoperiod for participation in regulation of zebrafish ovarian development[J]. South China Fisheries Science, 2019, 15(3): 68-75. DOI: 10.12131/20180286

TGF-β/Smad signaling pathway responding to photoperiod for participation in regulation of zebrafish ovarian development

More Information
  • Received Date: December 19, 2018
  • Revised Date: January 15, 2019
  • Accepted Date: January 30, 2019
  • Available Online: February 17, 2019
  • To study the role of TGF-β/Smad signaling pathway in zebrafish (Danio rerio) ovary under different photoperiod conditions, we detected the relative expression of relevant genes in TGF-β/Smad signaling pathway of zebrafish ovary under continuous dark (0 L∶24 D, DD), natural photoperiod (14 L∶10 D, LD) and continuous light (24 L∶0 D, LL) using quantitative real-time PCR. The location of p-Smad2 in zebrafish ovary was detected by immunohistochemical technology. The results show that the expression patterns of genes involved in TGF-β/Smad signaling pathway were different in zebrafish ovary under different photoperiod conditions, and the expression profiles of ligand (tgfb3), receptor (tgfbr2a, tgfbr2b and tgfbr1b) and downstream protein kinase (smad2 and smad3a) were consistent. The relative expression levels of the above six genes were the highest in DD group and the lowest in LL group after 3-day treatment of different photoperiods, and an opposite trend was observed after 7 d. The p-Smad2 protein signal was detected in the development of zebrafish oocytes from previtellogenic stage (PV) to full-grown immature stage (FG). Photoperiod treatment did not affect the localization of p-Samd2 in zebrafish ovary. The results suggest that change of photoperiod might affect the ovarian development of zebrafish by changing the expression pattern of genes of tgfb3/receptor/protein kinase.

  • [1]
    ARTIGAS G Q, LAPEBIE P, LECLERE L A, et al. A gonad-expressed opsin mediates light-induced spawning in the jellyfish Clytia[J]. Elife, 2018, 7: e29555. doi: 10.7554/eLife.29555
    [2]
    SOKOLOWSKA E, KLESZCZYNSKA A, NIETRZEBA M, et al. Annual changes in brain concentration of arginine vasotocin and isotocin correspond with phases of reproductive cycle in round goby, Neogobius melanostomus[J]. Chronobiol Int, 2015, 32(7): 917-924. doi: 10.3109/07420528.2015.1052142
    [3]
    HANSEN T J, FJELLDAL P G, FOLKEDAL O, et al. Effects of light source and intensity on sexual maturation, growth and swimming behaviour of Atlantic salmon in sea cages[J]. Aquacult Env Interac, 2017, 9: 193-204. doi: 10.3354/aei00224
    [4]
    TARANGER G L, AARDAL L, HANSEN T, et al. Continuous light delays sexual maturation and increases growth of Atlantic cod (Gadus morhua L.) in sea cages[J]. ICES J Mar Sci, 2006, 63(2): 365-375. doi: 10.1016/j.icesjms.2005.10.014
    [5]
    LEE C H, PARK Y J, LEE Y D. Effects of photoperiod manipulation on gonadal activity of the damselfish, Chromis notata[J]. Dev Reprod, 2017, 21(2): 223-228. doi: 10.12717/DR.2017.21.2.223
    [6]
    TAKEUCHI Y, HADA N, IMAMURA S, et al. Existence of a photoinducible phase for ovarian development and photoperiod-related alteration of clock gene expression in a damselfish[J]. Comp Biochem Physiol A, 2015, 188: 32-39. doi: 10.1016/j.cbpa.2015.06.010
    [7]
    PARMEGGIANI A, GOVONI N, ZANNONI A, et al. Effect of photoperiod on endocrine profiles and vitellogenin expression in European eels Anguilla anguilla during artificially induced ovarian development[J]. Theriogenology, 2015, 83(4): 478-484. doi: 10.1016/j.theriogenology.2014.10.008
    [8]
    IMSLAND A K, JONASSEN T M, HANGSTAD T A, et al. The effect of continuous light and compressed photoperiods on growth and maturation in lumpfish Cyclopterus lumpus[J]. Aquaculture, 2018, 485: 166-172. doi: 10.1016/j.aquaculture.2017.11.053
    [9]
    LUO K X. Signaling cross talk between TGF-beta/Smad and other signaling pathways[J]. Cold Spring Harb Perspect Biol, 2017, 9(1): a022137. doi: 10.1101/cshperspect.a022137
    [10]
    詹绪良, 吴金英, 李文笙. TGF-β系统及其在硬骨鱼中的研究进展[J]. 南方水产科学, 2013, 9(3): 90-96. doi: 10.3969/j.issn.2095-0780.2013.03.015
    [11]
    ZHU B, PARDESHI L, CHEN Y Y, et al. Transcriptomic analysis for differentially expressed genes in ovarian follicle activation in the zebrafish[J]. Front Endocrinol (Lausanne), 2018, 9: 593. doi: 10.3389/fendo.2018.00593
    [12]
    KOHLI G, HU S Q, CLELLAND E, et al. Cloning of transforming growth factor-β1 (TGF-β1) and its type II receptor from zebrafish ovary and role of TGF-β1 in oocyte maturation[J]. Endocrinology, 2003, 144(5): 1931-1941. doi: 10.1210/en.2002-0126
    [13]
    KOHLI G, CLELLAND E, PENG C. Potential targets of transforming growth factor-beta1 during inhibition of oocyte maturation in zebrafish[J]. Reprod Biol Endocrinol, 2005, 3: 53. doi: 10.1186/1477-7827-3-53
    [14]
    SLOIN H E, RUGGIERO G, RUBINSTEIN A, et al. Interactions between the circadian clock and TGF-β signaling pathway in zebrafish[J]. PLoS One, 2018, 13(6): e0199777. doi: 10.1371/journal.pone.0199777
    [15]
    GAST H, GORDIC S, PETRZILKA S, et al. Transforming growth factor-beta inhibits the expression of clock genes[J]. Ann NY Acad Sci, 2012, 1261(1): 79-87. doi: 10.1111/nyas.2012.1261.issue-1
    [16]
    LIU K C, LIN S W, GE W. Differential regulation of gonadotropin receptors (fshr and lhcgr) by estradiol in the zebrafish ovary involves nuclear estrogen receptors that are likely located on the plasma membrane[J]. Endocrinology, 2011, 152(11): 4418-4430. doi: 10.1210/en.2011-1065
    [17]
    SELMAN K, WALLACE R A, SARKA A, et al. Stages of oocyte development in the zebrafish, Brachydanio rerio[J]. J Morphol, 1993, 218(2): 203-224. doi: 10.1002/(ISSN)1097-4687
    [18]
    WANG Y, GE W. Developmental profiles of activin betaA, betaB, and follistatin expression in the zebrafish ovary: evidence for their differential roles during sexual maturation and ovulatory cycle[J]. Biol Reprod, 2004, 71(6): 2056-2064. doi: 10.1095/biolreprod.104.032649
    [19]
    CHU Y L, XU Y R, YANG W X, et al. The role of FSH and TGF-β superfamily in follicle atresia[J]. Aging, 2018, 10(3): 305-321. doi: 10.18632/aging.v10i3
    [20]
    WANG D, WANG W, LIANG Q, et al. DHEA-induced ovarian hyperfibrosis is mediated by TGF-β signaling pathway[J]. J Ovarian Res, 2018, 11(1): 6. doi: 10.1186/s13048-017-0375-7
    [21]
    BASU M, BHATTACHARYA R, RAY U, et al. Invasion of ovarian cancer cells is induced by PITX2-mediated activation of TGF-β and Activin-A[J]. Mol Cancer, 2015, 14(1): 162. doi: 10.1186/s12943-015-0433-y
    [22]
    HATZIRODOS N, BAYNE R A, IRVING-RODGERS H F, et al. Linkage of regulators of TGF-β activity in the fetal ovary to polycystic ovary syndrome[J]. FASEB J, 2011, 25(7): 2256-2265. doi: 10.1096/fj.11-181099
    [23]
    KNIGHT P G, GLISTER C. TGF-beta superfamily members and ovarian follicle development[J]. Reproduction, 2006, 132(2): 191-206. doi: 10.1530/rep.1.01074
    [24]
    ROSAIRO D, KUYZNIEREWICZ I, FINDLAY J A. Transforming growth factor-beta: its role in ovarian follicle development[J]. Reproduction, 2008, 136(6): 799-809. doi: 10.1530/REP-08-0310
    [25]
    LIU X, ANDOH K, ABE Y, et al. A comparative study on transforming growth factor-beta and activin A for preantral follicles from adult, immature, and diethylstilbestrol-primed immature mice[J]. Endocrinology, 1999, 140(6): 2480-2485. doi: 10.1210/endo.140.6.6827
    [26]
    HELDIN C H, MOUSTAKAS A. Signaling receptors for TGF-β family members[J]. CSH Perspect Biol, 2016, 8(8): a022053.
    [27]
    TAN Q, BALOFSKY A, WEISZ K, et al. Role of activin, transforming growth factor-β and bone morphogenetic protein 15 in regulating zebrafish oocyte maturation[J]. Comp Biochem Physiol A, 2009, 153(1): 18-23.
    [28]
    CHEN W T, LIU L, GE W. Expression analysis of growth differentiation factor 9 (Gdf9/gdf9), anti-müllerian hormone (Amh/amh) and aromatase (Cyp19a1a/cyp19a1a) during gonadal differentiation of the zebrafish, Danio rerio[J]. Biol Reprod, 2017, 96(2): 401-413. doi: 10.1095/biolreprod.116.144964
    [29]
    ITOH S, TEN DIJKE P. Negative regulation of TGF-β receptor/Smad signal transduction[J]. Curr Opin Cell Biol, 2007, 19(2): 176-184. doi: 10.1016/j.ceb.2007.02.015
    [30]
    MIYAZAWA K, MIYAZONO K. Regulation of TGF-β family signaling by inhibitory smads[J]. Cold Spring Harbor Perspect Biol, 2016, 9(3): a022095.
    [31]
    DONG C M, LI Z R, ALVAREZ R, et al. Microtubule binding to smads may regulate TGFβ activity[J]. Mol Cell, 2000(5): 27-34.
    [32]
    WANG Y, GE W. Spatial expression patterns of activin and its signaling system in the zebrafish ovarian follicle: evidence for paracrine action of activin on the oocytes[J]. Biol Reprod, 2003, 69(6): 1998-2006. doi: 10.1095/biolreprod.103.020826
  • Related Articles

    [1]LI Yu, HUANG Jiansheng, CHEN Youming, WEN Zhenwei, OU Guanghai, HUANG Jianpeng, JIANG Xintao, XIE Ruitao, MA Qian, CHEN Gang. Effect of low temperature stress on antioxidant stress, apoptosis and histological structure of gills in cobia (Rachycentron canadum)[J]. South China Fisheries Science, 2023, 19(3): 68-77. DOI: 10.12131/20220227
    [2]CHEN Jie, HE Yang, DAI Xuping, WANG Jun, QING Chuanjie, LI Rui. Histological observation and innate immune barrier study of head kidney of Pelteobagrus vachelli[J]. South China Fisheries Science, 2021, 17(1): 82-90. DOI: 10.12131/20200119
    [3]WANG Jian, ZENG Benhe, XU Zhaoli, ZHANG Bianbian, LIU Haiping, WANG Wanliang, WANG Jinlin, ZHOU Jianshe, HUANG Liping. Effect of dietary protein level on digestive enzyme activity and histological structure in intestine and liver of juvenile Schizopygopsis younghusbandi[J]. South China Fisheries Science, 2019, 15(6): 112-119. DOI: 10.12131/20190107
    [4]MA Dingchang, YE Liuhe, XU Aiyu, PAN Gan, LONG Cheng. A histological study of Tylorrhynchus heterochaetus[J]. South China Fisheries Science, 2014, 10(4): 58-63. DOI: 10.3969/j.issn.2095-0780.2014.04.010
    [5]LIU Zaijun, CEN Jianwei, LI Laihao, YANG Xianqing, HAO Shuxian, WEI Ya, ZHOU Wanjun. Thoughts and prospect of comprehensive utilization of tilapia blood[J]. South China Fisheries Science, 2012, 8(2): 76-80. DOI: 10.3969/j.issn.2095-0780.2012.02.012
    [6]WANG Jingxiang, LI Jia′er, OU Youjun, WANG Yongcui. Ultrastructure of peripheral blood cells of highfin grouper Cromileptes altivelis[J]. South China Fisheries Science, 2011, 7(5): 50-54. DOI: 10.3969/j.issn.2095-0780.2011.05.008
    [7]HU Lingling, LI Jia'er, OU Youjun, YU Na, WANG Gang. Study on microstructure of head-kidney and spleen of Oplegnathus fasciatus[J]. South China Fisheries Science, 2010, 6(3): 41-45. DOI: 10.3969/j.issn.1673-2227.2010.03.008
    [8]LAO Haihua, YE Xing, ZOU Weimin, BAI Junjie, TAN Aiping. Detection of infectious spleen and kidney necrosis virus (ISKNV) of mandarin fish (Siniperca chuatsi) by nested PCR[J]. South China Fisheries Science, 2009, 5(4): 69-72. DOI: 10.3969/j.issn.1673-2227.2009.04.013
    [9]SU Youlu, XU Liwen, FENG Juan, GUO Zhixun, WANG Jiangyong. Study on the morphology of peripheral blood cells of juvenile cobia Rachycentron canadum[J]. South China Fisheries Science, 2007, 3(1): 48-53.
    [10]HUANG Jian-hua, MA Zhi-ming, ZHOU Fa-lin, YE Le, JIANG Shi-gui. Study on anatomy structure and histology of the ovary of wild Penaeus monodon(Fabricius) from the north of South China Sea[J]. South China Fisheries Science, 2005, 1(3): 49-53.
  • Cited by

    Periodical cited type(2)

    1. 安余梁,祁峰,母锐敏,马桂霞. 微藻除磷机理及其工艺模式的研究进展. 工业水处理. 2025(02): 10-17 .
    2. 马林,李春艳,李明泽,罗鑫,丁子元,孟睦涵,徐林通,姜巨峰. 天津市碳汇渔业潜力研究及未来展望. 海洋湖沼通报(中英文). 2024(04): 81-88 .

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return