LI Yu, HUANG Jiansheng, CHEN Youming, WEN Zhenwei, OU Guanghai, HUANG Jianpeng, JIANG Xintao, XIE Ruitao, MA Qian, CHEN Gang. Effect of low temperature stress on antioxidant stress, apoptosis and histological structure of gills in cobia (Rachycentron canadum)[J]. South China Fisheries Science, 2023, 19(3): 68-77. DOI: 10.12131/20220227
Citation: LI Yu, HUANG Jiansheng, CHEN Youming, WEN Zhenwei, OU Guanghai, HUANG Jianpeng, JIANG Xintao, XIE Ruitao, MA Qian, CHEN Gang. Effect of low temperature stress on antioxidant stress, apoptosis and histological structure of gills in cobia (Rachycentron canadum)[J]. South China Fisheries Science, 2023, 19(3): 68-77. DOI: 10.12131/20220227

Effect of low temperature stress on antioxidant stress, apoptosis and histological structure of gills in cobia (Rachycentron canadum)

More Information
  • Received Date: August 23, 2022
  • Revised Date: October 14, 2022
  • Accepted Date: December 03, 2022
  • Available Online: December 18, 2022
  • The gill tissue of cobia (Rachycentron canadum) is sensitive to water temperature changes. In order to investigate the effect of low temperature stress on juvenile cobia, and reveal its response mechanism to low temperature stress, we designed two low temperature groups (18 ℃ and 21 ℃) and one control group (28 ℃), to analyze the antioxidant responses, expression of apoptosis-related genes and histological structure of the gills on 0, 4th and 7th day after the stress. The results show that the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) in the low-temperature groups were significantly lower than those in the control group (P<0.05), while the malondialdehyde (MDA) mass concentration in the low-temperature groups was significantly higher than that in the control group (P<0.05). The expression of apoptosis-related genes bax, caspase-9, caspase-3, p53 and mdm2 increased significantly in the low-temperature groups, while the expression of Bcl-2 decreased significantly on 4th and 7th day (P<0.05). The TUNEL results reveal that low-temperature treatment increased the cell apoptosis rate of the gills, and caused lesions including fusion of secondary lamellae, necrosis of epithelial cell and hyperplasia of chloride cells. The results indicate that low-temperature stress causes oxidative stress, induces apoptosis and damages the structural integrity of the gills, which suggests that normal physiological functions of juvenile cobia can be affected by low temperature significantly.
  • [1]
    IONA A, THEODOROU A, SOFIANOS S, et al. Mediterranean Sea climatic indices: monitoring long-term variability and climate changes[J]. Earth Syst Sci Data, 2018, 10(4): 1829-1842. doi: 10.5194/essd-10-1829-2018
    [2]
    LAZOGLOU G, ANAGNOSTOPOULOU C, TOLIKA K, et al. A review of statistical methods to analyze extreme precipitation and temperature events in the Mediterranean region[J]. Theor Appl Climatol, 2019, 136(1): 99-117.
    [3]
    PHROMPANYA P, PANASE P, SAENPHET S, et al. Histopathology and oxidative stress responses of Nile tilapia Oreochromis niloticus exposed to temperature shocks[J]. Fish Sci, 2021, 87(4): 491-502. doi: 10.1007/s12562-021-01511-y
    [4]
    XU Z H, REGENSTEIN J M, XIE D, et al. The oxidative stress and antioxidant responses of Litopenaeus vannamei to low temperature and air exposure[J]. Fish Shellfish Immunol, 2018, 72: 564-571. doi: 10.1016/j.fsi.2017.11.016
    [5]
    YANG S Y, YAN T, ZHAO L W, et al. Effects of temperature on activities of antioxidant enzymes and Na+/K+-ATPase, and hormone levels in Schizothorax prenanti[J]. J Therm Biol, 2018, 72: 155-160. doi: 10.1016/j.jtherbio.2018.02.005
    [6]
    BIRBEN E, SAHINER U M, SACKESEN C, et al. Oxidative stress and antioxidant defense[J]. World Allergy Organ J, 2012, 5(1): 9-19. doi: 10.1097/WOX.0b013e3182439613
    [7]
    CAO L, HUANG W, SHAN X J, et al. Tissue-specific accumulation of cadmium and its effects on antioxidative responses in Japanese flounder juveniles[J]. Environ Toxicol Pharmacol, 2012, 33(1): 16-25. doi: 10.1016/j.etap.2011.10.003
    [8]
    JOY S, ALIKUNJU A P, JOSE J, et al. Oxidative stress and antioxidant defense responses of Etroplus suratensis to acute temperature fluctuations[J]. J Therm Biol, 2017, 70: 20-26. doi: 10.1016/j.jtherbio.2017.10.010
    [9]
    JIN S R, WANG L, LI X X, et al. Integrating antioxidant responses and oxidative stress of ornamental discus (Symphysodon spp.) to decreased temperatures: evidence for species-specific thermal resistance[J]. Aquaculture, 2021, 535: 736375. doi: 10.1016/j.aquaculture.2021.736375
    [10]
    SIES H. Oxidative stress: oxidants and antioxidants[J]. Exp Physiol, 1997, 82(2): 291-295. doi: 10.1113/expphysiol.1997.sp004024
    [11]
    ZHANG X J, NIU Y G, ZHANG H Y, et al. The effect of long-term cold acclimation on redox state and antioxidant defense in the high-altitude frog, Nanorana pleskei[J]. J Therm Biol, 2021, 99: 103008. doi: 10.1016/j.jtherbio.2021.103008
    [12]
    COIMBRA-COSTA D, ALVA N, DURAN M, et al. Oxidative stress and apoptosis after acute respiratory hypoxia and reoxygenation in rat brain[J]. Redox Biol, 2017, 12: 216-225. doi: 10.1016/j.redox.2017.02.014
    [13]
    ZHA J M, HONG X S, RAO H O, et al. Benzo (a) pyrene-induced a mitochondria-independent apoptosis of liver in juvenile Chinese rare minnows (Gobiocypris rarus)[J]. Environ Pollut, 2017, 231: 191-199. doi: 10.1016/j.envpol.2017.08.005
    [14]
    WANG J, WANG Q, LIU N, et al. Hydrogen peroxide leads to cell damage and apoptosis in the gill of the freshwater crab Sinopotamon henanense (Crustacea, Decapoda)[J]. Hydrobiologia, 2014, 741(1): 13-21. doi: 10.1007/s10750-013-1760-x
    [15]
    郭梓沣, 孙斌斌, 柯文杰, 等. 病原诱导水产动物细胞凋亡途径研究进展[J]. 水产科技报, 2022, 49(3): 164-170. doi: 10.7541/2021.2019.212
    [16]
    JIN Y X, LEE J Y, CHOI S H, et al. Heat shock induces apoptosis related gene expression and apoptosis in porcine parthenotes developing in vitro[J]. Anim Reprod Sci, 2007, 100(1/2): 118-127.
    [17]
    ZHANG H, HUANG H, ZHENG P, et al. The alleviative effect of thyroid hormone on cold stress-induced apoptosis via HSP70 and mitochondrial apoptosis signal pathway in bovine Sertoli cells[J]. Cryobiology, 2022, 105: 63-70. doi: 10.1016/j.cryobiol.2021.11.181
    [18]
    CHENG C H, YANG F F, LIAO S A, et al. High temperature induces apoptosis and oxidative stress in pufferfish (Takifugu obscurus) blood cells[J]. J Therm Biol, 2015, 53: 172-179. doi: 10.1016/j.jtherbio.2015.08.002
    [19]
    TASSABEHJI N M, VANLANDINGHAM J W, LEVENSON C W. Copper alters the conformation and transcriptional activity of the tumor suppressor protein p53 in human Hep G2 cells[J]. Exp Biol Med (Maywood), 2005, 230(10): 699-708. doi: 10.1177/153537020523001002
    [20]
    ELABD H, WANG H P, SHAHEEN A, et al. Anti-oxidative effects of some dietary supplements on yellow perch (Perca flavescens) exposed to different physical stressors[J]. Aquac Rep, 2017, 8: 21-30. doi: 10.1016/j.aqrep.2017.09.002
    [21]
    ZHANG M , HU J B, ZHU J J, et al. Transcriptome, antioxidant enzymes and histological analysis reveal molecular mechanisms responsive to long-term cold stress in silver pomfret (Pampus argenteus)[J]. Fish Shellfish Immunol, 2022, 121: 351-361. doi: 10.1016/j.fsi.2022.01.017
    [22]
    SABER H T. Histological adaptation to thermal changes in gills of common carp fishes Cyprinus carpio L.[J]. Rafidain J Sci, 2011, 22(1): 46-55. doi: 10.33899/rjs.2011.32464
    [23]
    WANG Z, DONG Z D, YANG Y T, et al. Histology, physiology, and glucose and lipid metabolism of Lateolabrax maculatus under low temperature stress[J]. J Therm Biol, 2022, 104: 103161. doi: 10.1016/j.jtherbio.2021.103161
    [24]
    NIE M M, HU J W, LU Y L, et al. Cold effect analysis and screening of SNPs associated with cold-tolerance in the olive flounder Paralichthys olivaceus[J]. J Appl Ichthyol, 2019, 35(4): 924-932.
    [25]
    王维政, 曾泽乾, 黄建盛, 等. 低氧胁迫对军曹鱼幼鱼抗氧化、免疫能力及能量代谢的影响[J]. 广东海洋大学学报, 2020, 40(5): 12-18. doi: 10.3969/j.issn.1673-9159.2020.05.002
    [26]
    BENETTI D D, SUAREZ J, CAMPERIO J, et al. A review on cobia, Rachycentron canadum, aquaculture[J]. J World Aquac Soc, 2021, 52(3): 691-709. doi: 10.1111/jwas.12810
    [27]
    石琼, 张勇, 范明君. 中国经济鱼类志[M]. 武汉: 华中科技大学出版社, 2015: 277-278.
    [28]
    李豫, 黄建盛, 陈有铭, 等. 低温胁迫对军曹鱼幼鱼血清生化指标、肝脏抗氧化酶活性及凋亡相关基因表达量的影响[J]. 广东海洋大学学报, 2022, 42(5): 1-9. doi: 10.3969/j.issn.1673-9159.2022.05.001
    [29]
    蔡润佳, 张静, 黄建盛, 等. 低温胁迫对军曹鱼幼鱼脂代谢相关生理生化的影响[J]. 广东海洋大学学报, 2021, 41(3): 123-130. doi: 10.3969/j.issn.1673-9159.2021.03.016
    [30]
    ABOKA E R, JIAN Z, SHENGMING S, et al. Histopathological changes in gills, liver, and kidney tissues of bighead carp (Aristichthys nobilis) due to the effects of acute high-temperature stress[J]. Isr J Aquac, 2017, 69(1). DOI: 10.46989/001c.21062.
    [31]
    MATEY V, RICHARDS J G, WANG Y, et al. The effect of hypoxia on gill morphology and ionoregulatory status in the Lake Qinghai scaleless carp, Gymnocypris przewalskii[J]. J Exp Biol, 2008, 211(7): 1063-1074. doi: 10.1242/jeb.010181
    [32]
    HWANG P P, LEE T H, LIN L Y. Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms[J]. Am J Physiol Regul Integr Comp Physiol, 2011, 301(1): R28-R47. doi: 10.1152/ajpregu.00047.2011
    [33]
    ISLAM M A, UDDIN M H, UDDIN M J, et al. Temperature changes influenced the growth performance and physiological functions of Thai pangas Pangasianodon hypophthalmus[J]. Aquac Rep, 2019, 13: 100179. doi: 10.1016/j.aqrep.2019.100179
    [34]
    WEN B, JIN S R, CHEN Z Z, et al. Physiological responses to cold stress in the gills of discus fish (Symphysodon aequifasciatus) revealed by conventional biochemical assays and GC-TOF-MS metabolomics[J]. Sci Total Environ, 2018, 640: 1372-1381.
    [35]
    WANG J, REN R, YAO C L. Oxidative stress responses of Mytilus galloprovincialis to acute cold and heat during air exposure[J]. J Molluscan Stud, 2018, 84(3): 285-292. doi: 10.1093/mollus/eyy027
    [36]
    MENG X L, LIU P, LI J, et al. Physiological responses of swimming crab Portunus trituberculatus under cold acclimation: antioxidant defense and heat shock proteins[J]. Aquaculture, 2014, 434: 11-17. doi: 10.1016/j.aquaculture.2014.07.021
    [37]
    龙勇, 葛国栋, 李西西, 等. 鱼类低温应激反应的调控机制[J]. 水生生物学报, 2021, 45(6): 1405-1414.
    [38]
    ROSSI A, BACCHETTA C, CAZENAVE J. Effect of thermal stress on metabolic and oxidative stress biomarkers of Hoplosternum littorale (Teleostei, Callichthyidae)[J]. Ecol Indic, 2017, 79: 361-370. doi: 10.1016/j.ecolind.2017.04.042
    [39]
    LUSHCHAK V I. Environmentally induced oxidative stress in aquatic animals[J]. Aquat Toxicol, 2011, 101(1): 13-30. doi: 10.1016/j.aquatox.2010.10.006
    [40]
    LACY B, RAHMAN M S, RAHMAN M S. Potential mechanisms of Na+/K+-ATPase attenuation by heat and pesticides co-exposure in goldfish: role of cellular apoptosis, oxidative/nitrative stress, and antioxidants in gills[J]. Environ Sci Pollut Res, 2022, 29: 57376-57394. doi: 10.1007/s11356-022-19779-7
    [41]
    WEN P J, WEI X M, LIANG G Q, et al. Long-term exposure to low level of fluoride induces apoptosis via p53 pathway in lymphocytes of aluminum smelter workers[J]. Environ Sci Pollut Res, 2019, 26(3): 2671-2680. doi: 10.1007/s11356-018-3726-z
    [42]
    MARTÍNEZ-MORENTIN L, MARTÍNEZ L, PILOTO S, et al. Cardiac deficiency of single cytochrome oxidase assembly factor scox induces p53-dependent apoptosis in a Drosophila cardiomyopathy model[J]. Hum Mol Genet, 2015, 24(13): 3608-3622. doi: 10.1093/hmg/ddv106
    [43]
    LIN T, MAK N K, YANG M S. MAPK regulate p53-dependent cell death induced by benzo[a]pyrene: involvement of p53 phosphorylation and acetylation[J]. Toxicology, 2008, 247(2): 145-153.
    [44]
    刘林, 赵群芬, 金凯星, 等. 纳米氧化锌对斑马鱼肝脏的毒性效应[J]. 环境科学, 2015, 36(10): 3884-3891. doi: 10.13227/j.hjkx.2015.10.044
    [45]
    陈小雁, 熊真真, 尤姗姗, 等. FLASH 结合 p53 并增强其转录活性[J]. 中国生物化学与分子生物学报, 2021, 37(10): 1345-1356.
    [46]
    刘明丽, 杨文意, 王金凤, 等. 低温胁迫下鱼类鳃中RPL11/MDM2/P53信号通路相关基因及蛋白表达差异分析[J]. 大连海洋大学学报, 2021, 36(1): 51-56. doi: 10.16535/j.cnki.dlhyxb.2020-008
    [47]
    ZHANG Y, LI Q, SHU Y M, et al. Induction of apoptosis in S180 tumour bearing mice by polysaccharide from Lentinus edodes via mitochondria apoptotic pathway[J]. J Funct Foods, 2015, 15: 151-159. doi: 10.1016/j.jff.2015.03.025
    [48]
    JIAO W Y, HAN Q, XU Y, et al. Impaired immune function and structural integrity in the gills of common carp (Cyprinus carpio L.) caused by chlorpyrifos exposure: through oxidative stress and apoptosis[J]. Fish Shellfish Immunol, 2019, 86: 239-245. doi: 10.1016/j.fsi.2018.08.060
    [49]
    TANG J, ZHANG Z X, MIAO J J, et al. Effects of benzo[a]pyrene exposure on oxidative stress and apoptosis of gill cells of Chlamys farreri in vitro[J]. Environ Toxicol Pharmacol, 2022, 93: 103867. doi: 10.1016/j.etap.2022.103867
    [50]
    CHENG C H, YE C X, GUO Z X, et al. Immune and physiological responses of pufferfish (Takifugu obscurus) under cold stress[J]. Fish Shellfish Immunol, 2017, 64: 137-145. doi: 10.1016/j.fsi.2017.03.003
    [51]
    胡玲红, 王映, 王化敏, 等. 不同温度胁迫对青鳉鳃凋亡的影响[J]. 大连海洋大学学报, 2021, 36(6): 929-936. doi: 10.16535/j.cnki.dlhyxb.2021-053
    [52]
    LIU Y F, MA D Y, XIAO Z Z, et al. Histological change and heat shock protein 70 expression in different tissues of Japanese flounder Paralichthys olivaceus in response to elevated temperature[J]. Chin J Oceanol Limnol, 2015, 33(1): 11-19. doi: 10.1007/s00343-015-4028-7
    [53]
    MOHAMAD S, LIEW H J, ZAINUDDIN R A, et al. High environmental temperature and low pH stress alter the gill phenotypic plasticity of Hoven's carp Leptobarbus hoevenii[J]. J Fish Biol, 2021, 99(1): 206-218. doi: 10.1111/jfb.14712
    [54]
    ZHENG X, FENG L, JIANG W D, et al. The regulatory effects of pyridoxine deficiency on the grass carp (Ctenopharyngodon idella) gill barriers immunity, apoptosis, antioxidant, and tight junction challenged with Flavobacterium columnar[J]. Fish Shellfish Immunol, 2020, 105: 209-223. doi: 10.1016/j.fsi.2020.07.036
    [55]
    罗胜玉. 低温胁迫对黄姑鱼生理生化指标和Hsp70基因表达模式的影响[D]. 舟山: 浙江海洋大学, 2016: 7-11.
    [56]
    DASH G, YONZONE P, CHANDA M, et al. Histopathological changes in Labeo rohita (Hamilton) fingerlings to various acclimation temperatures[J]. Chronicles Young Scientists, 2011, 2(1): 29-36. doi: 10.4103/2229-5186.79347
    [57]
    区又君, 刘奇奇, 温久福, 等. 急性低温胁迫对四指马鲅幼鱼肝脏、肌肉以及鳃组织结构的影响[J]. 生态科学, 2018, 37(5): 53-59. doi: 10.14108/j.cnki.1008-8873.2018.05.008
    [58]
    GIBBONS T C, MCBRYAN T L, SCHULTE P M. Interactive effects of salinity and temperature acclimation on gill morphology and gene expression in threespine stickleback[J]. Comp Biochem Physiol A, 2018, 221: 55-62. doi: 10.1016/j.cbpa.2018.03.013
    [59]
    王萌, 潘阳阳, 岳亚辉, 等. 5种非甾体类抗炎药对小鼠的肝损伤作用[J]. 西北农林科技大学学报(自然科学版), 2021, 49(8): 9-16. doi: 10.13207/j.cnki.jnwafu.2021.08.002
    [60]
    HUANG C, FENG L, LIU X A, et al. The toxic effects and potential mechanisms of deoxynivalenol on the structural integrity of fish gill: oxidative damage, apoptosis and tight junctions disruption[J]. Toxicon, 2020, 174: 32-42. doi: 10.1016/j.toxicon.2019.12.151
    [61]
    ZHANG W X, XIA S L, ZHU J, et al. Growth performance, physiological response and histology changes of juvenile blunt snout bream, Megalobrama amblycephala exposed to chronic ammonia[J]. Aquaculture, 2019, 506: 424-436. doi: 10.1016/j.aquaculture.2019.03.072
    [62]
    DUTRA F M, RÖNNAU M, SPONCHIADO D, et al. Histological alterations in gills of Macrobrachium amazonicum juveniles exposed to ammonia and nitrite[J]. Aquat Toxicol, 2017, 187: 115-123. doi: 10.1016/j.aquatox.2017.04.003
    [63]
    卢其西, 林勇, 宾石玉, 等. 罗非鱼6个家系的低温耐寒测定分析[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 104-109. doi: 10.16088/j.issn.1001-6600.2011.02.016
    [64]
    胡玉珍. 低温选择大黄鱼子代SSR分析及越冬季节生理生化指标变化[D]. 宁波: 宁波大学, 2011: 9-18.
    [65]
    唐扬, 孟小菲, 沈瑞福, 等. 凡纳滨对虾家系选育的研究与应用[J]. 水产科学, 2018, 37(4): 555-563. doi: 10.16378/j.cnki.1003-1111.2018.04.020
    [66]
    ANGILLETTA M J, NIEWIAROWSKI P H, NAVAS C A. The evolution of thermal physiology in ectotherms[J]. J Therm Biol, 2002, 27(4): 249-268. doi: 10.1016/S0306-4565(01)00094-8
  • Related Articles

    [1]CHEN Zhao, XU Hongfei, ZHAO Heyong, LIU Kang, LI Hua, HE Jinzhao, WEI Lingjing. Cloning and expression of melanin-concentrating hormone 1 gene in Florida red tilapia (Oreochromis sp.)[J]. South China Fisheries Science, 2018, 14(3): 73-82. DOI: 10.3969/j.issn.2095-0780.2018.03.009
    [2]JIAO Zhenzhen, TIAN Yuanyuan, SUN Chengfei, DONG Junjian, JIANG Peng, YE Xing. Expression analysis of gcngr1 gene in grass carp (Ctenopharyngodon idellus) PSF cells[J]. South China Fisheries Science, 2017, 13(5): 55-62. DOI: 10.3969/j.issn.2095-0780.2017.05.008
    [3]FU Mingjun, ZHAO Chao, ZHOU Falin, QIU Lihua, JIANG Shigui. Molecular cloning and expression analysis of Ubiquitin-conjugating enzyme gene from black tiger shrimp (Penaeus monodon)[J]. South China Fisheries Science, 2015, 11(6): 41-48. DOI: 10.3969/j.issn.2095-0780.2015.06.006
    [4]WANG Rui, LI Liping, HUANG Ting, LIANG Wanwen, LIANG Cong, LEI Aiying, CHEN Ming. Real-time quantitative PCR for detection of Streptococcus agalactiae from tilapia tissue[J]. South China Fisheries Science, 2015, 11(3): 41-46. DOI: 10.3969/j.issn.2095-0780.2015.03.007
    [5]DAI Wenting, FU Mingjun, ZHAO Chao, ZHOU Falin, YANG Qibin, WANG Yan, SHI Jinxuan, QIU Lihua. Molecular cloning and expression analysis of CDK2 gene from black tiger shrimps (Penaeus monodon)[J]. South China Fisheries Science, 2015, 11(2): 1-11. DOI: 10.3969/j.issn.2095-0780.2015.02.001
    [6]LIU Yujiao, ZHU Huaping, LU Maixin, LIU Zhigang, CAO Jianmeng, GAO Fengying, KE Xiaoli. Effect of salinity stress on expression of PRLⅠgenes from tilapia and their distribution in different tissues[J]. South China Fisheries Science, 2014, 10(6): 51-57. DOI: 10.3969/j.issn.2095-0780.2014.06.007
    [7]XIAO Yayuan, XU Shannan, LIU Yong, LI Chunhou. Effect of No.0 diesel oil water-soluble fraction on CYP4 gene expression in green mussel (Perna viridis)[J]. South China Fisheries Science, 2014, 10(2): 61-66. DOI: 10.3969/j.issn.2095-0780.2014.02.009
    [8]LONG Minming, HUANG Guiju, ZOU Jixing, GUO Yihui, FAN Sigang, LIU Baosuo, YU Dahui. Effect of pearl culture on N19 and Prismalin-14 genes expression in the pearl oyster Pinctada fucata[J]. South China Fisheries Science, 2013, 9(5): 58-63. DOI: 10.3969/j.issn.2095-0780.2013.05.010
    [9]CHEN Liang, ZHANG Dianchang, YANG Lishi, HUANG Jianhua, YANG Qibin, JIANG Shigui. Sequence analysis of eukaryotic translation initiation factor 3 subunit G (eIF3g) of black tiger shrimp (Penaeus monodon) and its mRNA tissue expression[J]. South China Fisheries Science, 2009, 5(3): 1-9. DOI: 10.3969/j.issn.1673-2227.2009.03.001
    [10]QI Xudong, QU Youjun. Expression of five kinds of isozyme in different tissues of Trachinotus ovatus[J]. South China Fisheries Science, 2008, 4(3): 38-42.
  • Cited by

    Periodical cited type(5)

    1. 周茉,刘连为,余为. 西北太平洋柔鱼生活史过程及其资源与环境关系研究进展. 海洋湖沼通报(中英文). 2025(01): 191-199 .
    2. 武智,李跃飞,朱书礼,杨计平,夏雨果,李捷. 基于渔业声学调查的珠江东塔产卵场鱼类栖息地适宜性研究. 南方水产科学. 2023(03): 11-18 . 本站查看
    3. 孙永文,张胜茂,唐峰华,王书献,樊伟,范秀梅,杨胜龙. 基于卫星船位数据的北太平洋作业渔船分布及类型研究. 中国农业科技导报. 2022(08): 207-217 .
    4. 白思琦,邹晓荣,张鹏,丁鹏. 环境因子对东南太平洋智利竹?鱼渔场时空分布异质性影响. 南方水产科学. 2021(01): 17-24 . 本站查看
    5. 董恩和,黄宝善,石胜旗,黄洪亮,陈新军. 新时代背景下我国远洋鱿钓渔业可持续发展的有关建议. 水产科技情报. 2020(05): 261-265 .

    Other cited types(4)

Catalog

    Article views PDF downloads Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return