CHEN Yuxiang, LI Xiaoguo, TONG Fei, TANG Zhenzhao, YUAN Huarong, ZENG Lei, CHEN Pimao. Impact of Dongshanhai artificial reef on hydrodynamics in nearby sea area in Huizhou, Guangdong Province[J]. South China Fisheries Science, 2018, 14(6): 17-26. DOI: 10.12131/20180077
Citation: CHEN Yuxiang, LI Xiaoguo, TONG Fei, TANG Zhenzhao, YUAN Huarong, ZENG Lei, CHEN Pimao. Impact of Dongshanhai artificial reef on hydrodynamics in nearby sea area in Huizhou, Guangdong Province[J]. South China Fisheries Science, 2018, 14(6): 17-26. DOI: 10.12131/20180077

Impact of Dongshanhai artificial reef on hydrodynamics in nearby sea area in Huizhou, Guangdong Province

More Information
  • Received Date: April 23, 2018
  • Revised Date: July 04, 2018
  • Accepted Date: July 19, 2018
  • Available Online: December 05, 2018
  • In order to find out the influence law and mechanism of artificial reef on local tidal dynamics and other factors, according to the 25-hour continuous observation flow velocity and water level data of two stations in Dongshanhai artificial reef in July 2016, combining with numerical simulation method, we analyzed the effects of artificial reef on tidal power in the reef area and surrounding sea areas. With the simulation results before and after the reef construction, we obtained the variation trend of factors such as tidal current. The results show that the model simulation results fit well with the measured values. The artificial reef area had barely no effect on the tide constants and tidal characteristics in the survey area after completion. Some of the tidal current ellipsed in the artificial reef area changed direction and turned, and there was barely no influence outside the reef area. After the reef was built, the direction of the residual current within the reef area changed little, and the overall residual current of the reef area showed a decreasing trend towards the south. The horizontal flow field near the reef area changed significantly, but the influence in outer area of the reef was limited. There was an obvious upwelling flow in the inflow area of the reef, and the maximum bottom upwelling flow reached 1.2 cm·s–1 at the time of the tide surge, while the downwelling flow appeared at the back of the reef area.
  • [1]
    王爱香, 王金环. 发展海洋牧场构建“蓝色粮仓”[J]. 中国渔业经济, 2013, 31(3): 69-74.
    [2]
    杨红生, 霍达, 许强. 现代海洋牧场建设之我见[J]. 海洋与湖沼, 2016, 47(6): 1069-1074.
    [3]
    王恩辰. 海洋牧场建设及其升级问题研究[D]. 青岛: 中国海洋大学, 2015: 1-129.
    [4]
    阙华勇, 陈勇, 张秀梅, 等. 现代海洋牧场建设的现状与发展对策[J]. 中国工程科学, 2016, 18(3): 79-84.
    [5]
    BECKER A, TAYLOR M D, LOWRY M B. Monitoring of reef associated and pelagic fish communities on Australia's first purpose bulit offshore artificial reef[J]. ICES J Mar Sci, 2016, 74(1): 277-285.
    [6]
    佟飞, 唐振朝, 贾晓平, 等. 基于侧扫声纳方法的框架式人工鱼礁测量[J]. 南方水产科学, 2018, 14(1): 99-104.
    [7]
    廖秀丽, 陈丕茂, 马胜伟, 等. 大亚湾杨梅坑海域投礁前后浮游植物群落结构及其与环境因子的关系[J]. 南方水产科学, 2013, 9(5): 109-119.
    [8]
    陈丕茂, 袁华荣, 贾晓平, 等. 大亚湾杨梅坑人工鱼礁区渔业资源变动初步研究[J]. 南方水产科学, 2013, 9(5): 100-108.
    [9]
    李勇, 洪洁漳, 李辉权. 珠江口竹洲人工鱼礁与相邻天然礁附着生物群落结构研[J]. 南方水产科学, 2013, 9(2): 20-26.
    [10]
    丁玲, 唐振朝, 张钟哲. 人工鱼礁最大静摩擦系数影响因素的试验研究[J]. 南方水产科学, 2018, 14(1): 77-84.
    [11]
    秦传新, 陈丕茂, 贾晓平. 人工鱼礁构建对海洋生态系统服务价值的影响——以深圳杨梅坑人工鱼礁区为例[J]. 应用生态学报, 2011, 22(8): 2160-2166.
    [12]
    崔勇, 关长涛, 万荣, 等. 布设间距对人工鱼礁流场效应影响的数值模拟[J]. 海洋湖沼通报, 2011(2): 59-65.
    [13]
    邓济通, 黄远东, 姜剑伟, 等. 布设间距对三棱柱形人工鱼礁绕流影响的数值模拟[J]. 水资源与水工程学报, 2013, 24(2): 98-102, 108.
    [14]
    李晓磊, 栾曙光, 陈勇, 等. 立方体人工鱼礁背涡流的三维涡结构[J]. 大连海洋大学学报, 2012, 27(6): 572-577.
    [15]
    黄远东, 付登枫, 何文荣. 人工鱼礁开口比对流场效应影响的三维数值模拟研究[J]. 水资源与水工程学报, 2014, 25(4): 39-43.
    [16]
    付东伟, 栾曙光, 张瑞瑾, 等. 人工鱼礁开口比和迎流面形状对流场效应影响的双因素方差分析[J]. 大连海洋大学学报, 2012, 27(3): 274-278.
    [17]
    刘彦. 人工鱼礁水动力特性数值与实验研究[D]. 大连: 大连理工大学, 2014: 1-206.
    [18]
    唐衍力, 王磊, 梁振林, 等. 方型人工鱼礁水动力性能试验研究[J]. 中国海洋大学学报, 2007, 37(5): 713-716.
    [19]
    吴建, 拾兵, 杨立鹏, 等. 多孔方形鱼礁对水动力环境影响的试验研究[J]. 海洋湖沼通报, 2011, 2: 147-152.
    [20]
    郑延璇, 关长涛, 宋协法, 等. 星体型人工鱼礁流场效应的数值模拟[J]. 农业工程学报, 2012, 28(19): 185-196.
    [21]
    林军, 章守宇, 叶灵娜. 基于流场数值仿真的人工鱼礁组合优化研究[J]. 水产学报, 2013, 37(7): 1023-1031.
    [22]
    李珺, 林军, 章守宇. 方形人工鱼礁通透性及其对礁体周围流场影响的数值实验[J]. 上海海洋大学学报, 2010, 19(6): 836-840.
    [23]
    张硕, 孙满昌, 陈勇. 不同高度混凝土模型礁上升流特性的定量研究[J]. 大连水产学院学报, 2008, 23(5): 353-358.
    [24]
    刘洪生, 马翔, 章守宇, 等. 人工鱼礁流场风洞实验与数值模拟对比验证[J]. 中国水产科学, 2009, 16(3): 365-371.
    [25]
    林军, 章守宇, 龚甫贤. 象山港海洋牧场规划区选址评估的数值模拟研究:水动力条件和颗粒物滞留时间[J]. 上海海洋大学学报, 2012, 21(3): 452-459.
    [26]
    杨红, 张午. 人工鱼礁对流场效应影响的数值模拟[C]//2014年度上海市海洋湖沼学会年会暨学术年会论文集. 上海: 中国海洋工程咨询协会海洋装备分会, 上海市海洋湖沼学会, 2015: 186-194.
    [27]
    丁芮, 陈学恩, 曲念东. 珠江口及邻近海域潮汐环流数值模拟Ⅱ—河口水交换和物质输运分析[J]. 中国海洋大学学报, 2016, 46(7): 1-10.
    [28]
    黄宏, 李大鹏, 张岩, 等. 海州湾海洋牧场人工鱼礁投放对营养盐的影响[J]. 环境科学学报, 2017, 37(8): 2854-2861.
    [29]
    BONALDO D, BENETAZZO A, BERGAMASCO A, et al. Sediment transport modifications induced by submerged artificial reef systems: a case study for the Gulf of Venice[J]. Oceanol Hydrobiol St, 2014, 43(1): 7-20.
    [30]
    FALCÃO M, SANTOS M N, DRAGO T, et al. Effect of artificial reefs (southern Portugal) on sediment-water transport of nutrients: Importance of the hydrodynamic regime[J]. Est Coast Shelf Sci, 2009, 83(4): 451-459.
    [31]
    CHEN C S, LIU H D, ROBERT C B. An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: application to coastal ocean and estuaries[J]. J Atmos Ocean Tech, 2003, 20: 159-186.
    [32]
    CHEN Y X, JI Q Y, XU Q, et al. Hydrodynamic simulation of xiangshan harbor and adjacent water based on the high resolution numerical model[C]//Proceeding of the 3rd International Conference on Modeling and Computation in Engineering, CMCE 2014, June 28, 2014-June 29, 2014, Wuxi, China. Balkema: Taylor and Francis, 2014: 149-157.
    [33]
    CHEN Y X, ZUO J C, ZOU H Z, et al. Responses of estuarine salinity and transport processes to sea level rise in the Zhujiang (Pearl River) Estuary[J]. Acta Oceanologica Sinica, 2016, 35(5): 38-48.
    [34]
    ZHANG H, SHENG J Y. Estimation of extreme sea levels over the eastern continental shelf of North America[J]. J Geophys Res-Oceans, 2013, 118(11): 6253-6273.
    [35]
    PAN J Y, GU Y Z, WANG D X. Observations and numerical modeling of the Pearl River plume in summer season[J]. J Geophys Res-Oceans, 2014, 119(4): 2480-2500.
    [36]
    ZHAO J P, GONG W P, SHEN J. The effect of wind on the dispersal of a tropical small river plume[J]. Front Earth Sci, 2016, 4: 1-21.
    [37]
    DIETRICH G. General oceanography: an introduction[M]. New York: Wiley, 1980: 183-184.
  • Related Articles

    [1]WANG Yongjin, ZHANG Xun, ZHANG Yu, ZHOU Aizhong, LI Ziniu, WANG Shuaijie, LIU Longteng, WANG Lumin. Influence of main structural parameters on performance of bottom trawl with large-size mesh[J]. South China Fisheries Science, 2021, 17(4): 66-73. DOI: 10.12131/20210026
    [2]YANG Bingzhong, YANG Lin, TAN Yongguang, YAN Lei, ZHANG Peng, LI Jie. Size selectivity of combined square mesh and diamond mesh codends of shrimp beam trawl in South China Sea[J]. South China Fisheries Science, 2018, 14(1): 105-113. DOI: 10.3969/j.issn.2095-0780.2018.01.014
    [3]YAN Lei, LI Yanan, TAN Yongguang, YANG Lin, YANG Bingzhong, ZHANG Peng, CHEN Sen, LI Jie. Mesh size selectivity of Harpodon nehereus gillnet in northern South China Sea[J]. South China Fisheries Science, 2016, 12(2): 75-80. DOI: 10.3969/j.issn.2095-0780.2016.02.011
    [4]YANG Bingzhong, YANG Lin, TAN Yongguang, ZHANG Peng, YAN Lei, CHEN Sen. Preliminary analysis of relationship between mesh size of gillnet and body characteristics of target species in the South China Sea[J]. South China Fisheries Science, 2015, 11(6): 94-99. DOI: 10.3969/j.issn.2095-0780.2015.06.013
    [5]NIU Zhikai, LIU Baosuo, ZHANG Dongling, TAN Caigang, ZHANG Bo, CHEN Mingqiang, FAN Sigang, JIANG Song, HUANG Guiju, LI Youning, YU Dahui. Comparative analysis of growth traits and shell-closing strength among hybrid populations from three geographical groups of pearl oyster (Pinctada fucata)[J]. South China Fisheries Science, 2015, 11(1): 26-32. DOI: 10.3969/j.issn.2095-0780.2015.01.004
    [6]YANG Bingzhong, YANG Lin, TAN Yongguang, ZHANG Peng, YAN Lei. Relationship between body characteristic of Scomberomorus and the mesh size[J]. South China Fisheries Science, 2013, 9(5): 120-125. DOI: 10.3969/j.issn.2095-0780.2013.05.018
    [7]ZHANG Xu-feng, ZHANG Peng, TAN Yong-guang, YANG Lin. Analysis on catch selectivity of 30.3 mm square mesh codend oftrawl in Northern South China Sea[J]. South China Fisheries Science, 2006, 2(2): 51-55.
    [8]GE Zhangzi, LIANG Zhenlin, TOKAI Tadashi. Mesh size selectivity of white spotted ell pot in coast of Japan[J]. South China Fisheries Science, 2006, 2(1): 58-61.
    [9]GE Chang-zi. The review on the analysis of mesh size selectivity of trawl cod-end[J]. South China Fisheries Science, 2005, 1(4): 30-35.
    [10]ZHANG Peng, YANG Lin, ZHANG Xu-feng, TANG Yong-guang. Study on selectivity of different mesh size gillnet for Nemipterus virgatus in South China Sea[J]. South China Fisheries Science, 2005, 1(2): 61-66.
  • Cited by

    Periodical cited type(1)

    1. 张锴佳,张雪妍,秦小明,林海生,高加龙,郑惠娜,曹文红. 香港牡蛎酶解产物对雷公藤甲素诱导雄性小鼠生精障碍的影响. 大连海洋大学学报. 2022(06): 941-948 .

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return