GUO Yaojie, WAN Wubo, WANG Haishan, YE Le, CHEN Zhi. Comparison of fish species detection effect of three sets of commonly used eDNA metabarcoding primers on Sanya water samples[J]. South China Fisheries Science, 2025, 21(1): 66-76. DOI: 10.12131/20240216
Citation: GUO Yaojie, WAN Wubo, WANG Haishan, YE Le, CHEN Zhi. Comparison of fish species detection effect of three sets of commonly used eDNA metabarcoding primers on Sanya water samples[J]. South China Fisheries Science, 2025, 21(1): 66-76. DOI: 10.12131/20240216

Comparison of fish species detection effect of three sets of commonly used eDNA metabarcoding primers on Sanya water samples

More Information
  • Received Date: September 09, 2024
  • Revised Date: November 03, 2024
  • Accepted Date: December 18, 2024
  • Available Online: December 25, 2024
  • Environmental DNA (eDNA) metabarcoding is a high-efficiency, high-sensitivity and non-invasive species investigation tool. At present, there are many studies on the investigation of fish diversity based on eDNA metabarcoding which however is not well-developed, with a lack of consensus on the actual use of different primers. In order to reduce the cost of sequencing and screen out the universal primers with the best practical effect, we selected the water samples from eight sites in Sanya fish markets and Atlantis Aquarium, then compared the differences of three sets of universal primers (MiFish-U, AcMDB07 and Ac12S) for fish eDNA. The results show that: 1) There were significant differences in the reads number after quality control, the fish reads number, the total Operational taxonomic units (OTUs) number, the fish OTUs number and the ratio of fish reads among three sets of primers. MiFish-U had the highest amplification efficiency and targeting to fish species; 2) MiFish-U had the highest number of species (140 species), while AcMDB07 and Ac12S had 128 and 97 species, respectively; 3) The reference databases of Ac12S and AcMDB07 were not perfect, and 72.76% and 42.11% of the OTUs belonging to Ac12S and AcMDB07 could not be annotated to the species level, respectively; 4) There are very few endemic fish detected by Ac12S (Only four species), suggesting that it was easier to be replaced by the other two sets of primers in the actual use process, and MiFish-U had the lowest substitutability; 5) The three sets of primers reflected similar general trends in the fish abundance, but there were some differences in the specific species. The results show that MiFish-U is superior to AcMDB07 and Ac12S in species detection, considering various factors such as OTUs annotation, especially the conditions of existing reference data.

  • [1]
    SALA E, MAYORGA J, BRADLEY D, et al. Protecting the global ocean for biodiversity, food and climate[J]. Nature, 2021, 592(7854): 397-402. doi: 10.1038/s41586-021-03371-z
    [2]
    ALMOND R E A, GROOTEN M, JUFFE B D, et al. Living planet report 2022: building a nature-positive society[M]. Gland: World Wide Fund for Nature, 2022: 32-34.
    [3]
    DÍAZ-FERGUSON E E, MOYER G R. History, applications, methodological issues and perspectives for the use environmental DNA (eDNA) in marine and freshwater environments[J]. Rev Biol Trop, 2014, 62(4): 1273-1284. doi: 10.15517/rbt.v62i4.13231
    [4]
    THOMSEN P F, KIELGAST J, IVERSEN L L, et al. Monitoring endangered freshwater biodiversity using environmental DNA[J]. Mol Ecol, 2012, 21(11): 2565-2573. doi: 10.1111/j.1365-294X.2011.05418.x
    [5]
    ROURKE M L, FOWLER A M, HUGHES J M, et al. Environmental DNA (eDNA) as a tool for assessing fish biomass: a review of approaches and future considerations for resource surveys[J]. Environ DNA, 2022, 4(1): 9-33. doi: 10.1002/edn3.185
    [6]
    言柯程, 李建超, 田永军, 等. 基于环境DNA metabarcoding和底拖网调查的南黄海西部鱼类多样性比较[J]. 中国海洋大学学报 (自然科学版), 2023, 53(5): 71-81.
    [7]
    RUPPERT K M, KLINE R J, PAST M S R. Present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA[J]. Glob Ecol Conserv, 2019, 17: e00547.
    [8]
    赵娜, 杨刚, 吴祖立, 等. 环境DNA技术发展及其在长江流域水生生态学领域的应用研究进展[J]. 海洋渔业, 2024, 46(1): 119-128. doi: 10.3969/j.issn.1004-2490.2024.01.013
    [9]
    张方圆, 王汝贤, 杨刚, 等. 环境DNA技术在长江口中华绒螯蟹亲蟹资源监测中的应用[J]. 水生生物学报, 2024, 48(6): 950-957. doi: 10.7541/2024.2023.0337
    [10]
    THOMSEN P F, WILLERSLEV E. Environmental DNA-an emerging tool in conservation for monitoring past and present biodiversity[J]. Biol Conserv, 2015, 183: 4-18. doi: 10.1016/j.biocon.2014.11.019
    [11]
    BENG K C, CORLETT R T. Applications of environmental DNA (eDNA) in ecology and conservation: opportunities, challenges and prospects[J]. Biodivers Conserv, 2020, 29(7): 2089-2121. doi: 10.1007/s10531-020-01980-0
    [12]
    仝亚东, 匡箴, 刘鹏飞, 等. 基于环境DNA技术的东平湖鱼类多样性研究[J]. 中国水产科学, 2023, 30(12): 1530-1542. doi: 10.12264/JFSC2023-0265
    [13]
    李晨虹, 凌岚馨, 谭娟, 等. 环境DNA技术在水生生物监测中的挑战、突破和发展前景[J]. 上海海洋大学学报, 2023, 32(3): 564-574. doi: 10.12024/jsou.20221104019
    [14]
    ZHANG S, ZHAO J D, YAO M. A comprehensive and comparative evaluation of primers for metabarcoding eDNA from fish[J]. Methods Ecol Evol, 2020, 11(12): 1609-1625. doi: 10.1111/2041-210X.13485
    [15]
    舒璐. 基于环境DNA技术的鱼类多样性评估: 胚胎发育动力学、引物评价及洱海鱼类多样性监测[D]. 重庆: 西南大学, 2022: 37-60.
    [16]
    吕宏森, 王安香, 董智玲, 等. 长江上游鱼类环境DNA通用引物的选择与验证[J]. 水产学报, 2024, 48(6): 72-84.
    [17]
    周严, 童璐, 胡文静, 等. 淡水鱼类环境DNA宏条形码引物的筛选及其在千岛湖的应用[J]. 湖泊科学, 2024, 36(1): 187-199. doi: 10.18307/2024.0131
    [18]
    MIYA M, SATO Y, FUKUNAGA T, et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species[J]. R Soc Open Sci, 2015, 2(7): 150088. doi: 10.1098/rsos.150088
    [19]
    BYLEMANS J, GLEESON D M, HARDY C M, et al. Toward an ecoregion scale evaluation of eDNA metabarcoding primers: a case study for the freshwater fish biodiversity of the Murray-Darling Basin (Australia)[J]. Ecol Evol, 2018, 8(17): 8697-8712. doi: 10.1002/ece3.4387
    [20]
    EVANS N T, OLDS B P, RENSHAW M A, et al. Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding[J]. Mol Ecol Resour, 2016, 16(1): 29-41. doi: 10.1111/1755-0998.12433
    [21]
    VALENTINI A, TABERLET P, MIAUD C, et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding[J]. Mol Ecol, 2016, 25(4): 929-942. doi: 10.1111/mec.13428
    [22]
    MILAN D T, MENDES I S, DAMASCENO J S, et al. New 12S metabarcoding primers for enhanced neotropical freshwater fish biodiversity assessment[J]. Sci Rep, 2020, 10(1): 17966. doi: 10.1038/s41598-020-74902-3
    [23]
    TABERLET P, BONIN A, ZINGER L, et al. Environmental DNA-for biodiversity research and monitoring[M]. Oxford: Oxford University Press, 2018: 206.
    [24]
    WILCOX T M, MCKELVEY K S, YOUNG M K, et al. Environmental DNA particle size distribution from brook trout (Salvelinus fontinalis)[J]. Conserv Genet Resour, 2015, 7: 639-641. doi: 10.1007/s12686-015-0465-z
    [25]
    JO T, ARIMOTO M, MURAKAMI H, et al. Particle size distribution of environmental DNA from the nuclei of marine fish[J]. Environ Sci Technol, 2019, 53(16): 9947-9956. doi: 10.1021/acs.est.9b02833
    [26]
    JOSEPH C, FAIQ M E, LI Z, et al. Persistence and degradation dynamics of eDNA affected by environmental factors in aquatic ecosystems[J]. Hydrobiologia, 2022, 849(19): 4119-4133. doi: 10.1007/s10750-022-04959-w
    [27]
    WOOD S A, BIESSY L, LATCHFORD J L, et al. Release and degradation of environmental DNA and RNA in a marine system[J]. Sci Total Environ, 2020, 704: 135314. doi: 10.1016/j.scitotenv.2019.135314
    [28]
    杨泰昌, 李嘉华, 张颖, 等. 香港瘰螈eDNA引物和TaqMan探针的设计与确认[J]. 动物学杂志, 2020, 55(5): 624-636.
    [29]
    闫卉果, 董智玲, 马婷婷, 等. 基于环境DNA的岩原鲤检测及生物量评估[J]. 水产学报, 2022, 46(6): 1018-1026.
    [30]
    GWAK W S, NAKAYAMA K. Development of a MGB probe based qPCR protocol for detecting Pacific cod Gadus macrocephalus in eDNA samples[J]. Conserv Genet Resour, 2023, 15(4): 175-177. doi: 10.1007/s12686-023-01320-8
    [31]
    ZHU T, IWASAKI W. MultiBarcodeTools: easy selection of optimal primers for eDNA multi-metabarcoding[J]. Environ DNA, 2023, 5(6): 1793-1808. doi: 10.1002/edn3.499
    [32]
    蒋佩文, 李敏, 张帅, 等. 基于线粒体COI和12S rDNA基因构建珠江河口鱼类DNA宏条形码数据库[J]. 南方水产科学, 2022, 18(3): 13-21.
    [33]
    BYLEMANS J. Monitoring freshwater fish communities with environmental DNA (eDNA) metabarcoding[D]. Canberra: University of Canberra, 2018: 201-204.
    [34]
    陈治, 马春来, 叶乐, 等. 鱼类环境DNA metabarcoding片段的近缘物种识别差异[J]. 海洋学报, 2022, 44(8): 51-65. doi: 10.12284/j.issn.0253-4193.2022.8.hyxb202208006
    [35]
    MARQUES V, MILHAU T, ALBOUY C, et al. GAPeDNA: assessing and map global species gaps in genetic databases for eDNA metabarcoding[J]. Divers Distrib, 2021, 27(10): 1880-1892. doi: 10.1111/ddi.13142
    [36]
    NELSON J S, GRANDE T C, WILSON M V H. Fishes of the world[M]. New York: John Wiley & Sons, 2016: 1-5.
    [37]
    王月. 赤水河鱼类环境DNA宏条形码参考数据库的构建及应用[D]. 大连: 大连海洋大学, 2022: 25-39.
    [38]
    邓升铭. 我国南海鱼类的分子参考数据库的建立及宏条形码引物的开发及利用[D]. 海口: 海南大学, 2023: 15-19.
    [39]
    LIM S J, THOMPSON L R. Mitohelper: a mitochondrial reference sequence analysis tool for fish eDNA studies[J]. Environ DNA, 2021, 3(4): 706-715. doi: 10.1002/edn3.187
    [40]
    MIYA M, GOTOH R O, SADO T. MiFish metabarcoding: a high-throughput approach for simultaneous detection of multiple fish species from environmental DNA and other samples[J]. Fish Sci, 2020, 86(6): 939-970. doi: 10.1007/s12562-020-01461-x
    [41]
    COUTON M, LÉVÊQUE L, DAGUIN-THIÉBAUT C, et al. Water eDNA metabarcoding is effective in detecting non-native species in marinas, but detection errors still hinder its use for passive monitoring[J]. Biofouling, 2022, 38(4): 367-383. doi: 10.1080/08927014.2022.2075739
    [42]
    李诣远, DAVID C M, MICHAEL E P. 基于Nextflow构建的宏条形码自动化分析流程EPPS[J]. 生物多样性, 2019, 27: 567-575. doi: 10.17520/biods.2018211
    [43]
    FURLAN E M, DAVIS J, DUNCAN R P. Identifying error and accurately interpreting environmental DNA metabarcoding results: a case study to detect vertebrates at arid zone waterholes[J]. Mol Ecol Resour, 2020, 20(5): 1259-1276. doi: 10.1111/1755-0998.13170
    [44]
    BURIAN A, MAUVISSEAU Q, BULLING M, et al. Improving the reliability of eDNA data interpretation[J]. Mol Ecol Resour, 2021, 21(5): 1422-1433. doi: 10.1111/1755-0998.13367
    [45]
    刘山林, 邱娜, 张纾意, 等. 基因组学技术在生物多样性保护研究中的应用[J]. 生物多样性, 2022, 30(10): 334-354. doi: 10.17520/biods.2022441
    [46]
    杨海乐, 吴金明, 张辉, 等. 大型河流中鱼类组成的eDNA监测效率: 以长江武汉江段为例[J]. 中国水产科学, 2021, 28(6): 796-807. doi: 10.12264/JFSC2021-0556
    [47]
    KUMAR G, REAUME A M, FARRELL E, et al. Comparing eDNA metabarcoding primers for assessing fish communities in a biodiverse estuary[J]. PLoS One, 2022, 17(6): e026672.
  • Related Articles

    [1]CHEN Zhi, CAI Xingwei, ZHANG Qingfeng, LI Gaojun, MA Chunlai, SHEN Zhixin. Preliminary construction and comparative analysis of environmental DNA metabarcoding reference database of freshwater fishes in Hainan Island[J]. South China Fisheries Science, 2022, 18(3): 1-12. DOI: 10.12131/20210339
    [2]ZHANG Shengmao, FAN Wei, ZHANG Heng, YANG Shenglong, TANG Fenghua, ZHU Wenbin. Dynamic monitoring and analysis of number of fishing vessel voyages in Hainan Province based on Beidou position data[J]. South China Fisheries Science, 2018, 14(5): 1-10. DOI: 10.3969/j.issn.2095-0780.2018.05.001
    [3]ZHANG Li, YANG Xueming, JIANG Linyuan, YANG Qiong, HUANG Guanghua, LI Jianbin. Histological characteristics of gonadal development of Holothuria scabra from Hainan Island[J]. South China Fisheries Science, 2016, 12(3): 51-57. DOI: 10.3969/j.issn.2095-0780.2016.03.007
    [4]PANG Yong, NIE Rui, WANG Daoru, HUANG Qiang. Species diversity and horizontal distribution of Chaetoceros in coastal waters of Hainan Island during early summer[J]. South China Fisheries Science, 2015, 11(6): 9-18. DOI: 10.3969/j.issn.2095-0780.2015.06.002
    [5]DENG Bangping, XU Ren, LIU Caicai, CAI Peng, YE Shufeng. Distribution characteristics of zooplankton communities in offshore waters of the Southern Yellow Sea and the East China Sea in summer[J]. South China Fisheries Science, 2015, 11(4): 11-19. DOI: 10.3969/j.issn.2095-0780.2015.04.002
    [6]TONG Yuhe, MAI Rili, CHEN Jiming, LI Xiangmin. Survey and analysis of landings on Hainan Island[J]. South China Fisheries Science, 2012, 8(6): 85-91. DOI: 10.3969/j.issn.2095-0780.2012.06.013
    [7]WANG Qingyun, GAN Juli, CHEN Haigang, MA Shengwei, ZHANG Zhe, CAI Wengui, JIA Xiaoping. Characteristics and evaluation of temporal and spatial distribution of DDTs in oysters along coastal waters of Hainan Island, China[J]. South China Fisheries Science, 2012, 8(5): 1-8. DOI: 10.3969/j.issn.2095-0780.2012.05.001
    [8]SUN Dianrong, LI Yuan, WANG Xuehui. Seasonal changes of species composition and diversity of fishes in coastal waters of Hainan Island, China[J]. South China Fisheries Science, 2012, 8(1): 1-7. DOI: 10.3969/j.issn.2095-0780.2012.01.001
    [9]LIU Ming, YU Dahui, HUANG Guiju, LU Chuanliang. Genetic variation in Pinctada maxima populations of different year-class from Sanya, Hainan, China[J]. South China Fisheries Science, 2011, 7(1): 26-31. DOI: 10.3969/j.issn.2095-0780.2011.01.004
    [10]ZHOU Fa-lin, JIANG Shi-gui, JIANG Yong-jie, HUANG Jian-hua, MA Zhi-ming. Polymorphism of mtDNA 16S rRNA gene and control region sequence in Penaeus monodon of Sanya, Hainan[J]. South China Fisheries Science, 2006, 2(6): 13-18.
  • Other Related Supplements

  • Cited by

    Periodical cited type(9)

    1. 傅建军,安睿,朱文彬,王兰梅,罗明坤,董在杰. 套养池塘主要养殖阶段浮游生物的群落结构特征. 水产学杂志. 2024(01): 104-112 .
    2. 向劲,吴启藩,宋锐,彭治桃,李金龙,高峰,谢敏,程小飞. 循环水养殖池塘中浮游动植物功能群特征及水质评价. 水产学杂志. 2024(01): 81-89 .
    3. 闵文武,王龙燕,陈飞雄,周其椿. 集装箱养殖生态净化池塘中浮游植物群落结构多样性分析. 水产科技情报. 2024(05): 302-310 .
    4. 郑颖强,代梨梨,张辉,彭亮,陶玲,李谷,柴毅,廖咏玲. 池塘循环水养殖系统净化单元对水体浮游植物的影响. 中国水产科学. 2024(12): 1497-1510 .
    5. 王小冬,车轩,刘兴国,顾兆俊,丁艳青,陈晓龙. 曝气扰动促进高营养的饲料腐烂液中绿藻生长. 上海海洋大学学报. 2023(01): 142-149 .
    6. 闵文武,王龙燕,陈飞雄,周其椿,赵瑞平. 生态净化池塘浮游动物群落结构特征及其与环境因子的关系. 贵州农业科学. 2023(02): 66-75 .
    7. 赵秀侠,方婷,陈金良,高娜,陈诚,卢文轩. 陆基推水集装箱循环水养殖系统中浮游植物群落结构特征. 农业环境科学学报. 2023(04): 869-878 .
    8. 王龙燕,闵文武,王金乐,陈飞雄,周其椿,吴俣学. 集装箱循环水养殖系统中浮游植物群落结构特征及影响因素. 渔业现代化. 2022(04): 26-36 .
    9. 赵宇曦,刘兴国,周润锋,肖述文,孙照云. 池塘多营养级养殖水体的初级生产力及影响因子分析. 渔业现代化. 2022(06): 91-99 .

    Other cited types(4)

Catalog

    Article views (78) PDF downloads (28) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return