XU Bo, YUAN Hongchun. Research on fish feeding intensity classification model based on axial feature calibration and temporal segment network[J]. South China Fisheries Science, 2024, 20(6): 145-154. DOI: 10.12131/20240200
Citation: XU Bo, YUAN Hongchun. Research on fish feeding intensity classification model based on axial feature calibration and temporal segment network[J]. South China Fisheries Science, 2024, 20(6): 145-154. DOI: 10.12131/20240200

Research on fish feeding intensity classification model based on axial feature calibration and temporal segment network

More Information
  • Received Date: August 21, 2024
  • Revised Date: September 05, 2024
  • Accepted Date: October 09, 2024
  • Available Online: October 23, 2024
  • Traditional aquaculture methods rely on either quantitative feeding or human experience, often resulting in uneven feeding, feed waste and environmental pollution. This study aims to design a model for identifying the feeding intensity to enhance feeding efficiency and reduce pollution. Temporal segment network was employed as the base model to capture long-term changes in fish feeding behavior. Temporal shift operations were introduced to more accurately capture the dynamic changes between adjacent video frames. Through axial feature calibration, the model adaptively adjusted its features, enabling more precise focus on the variations in different axial features of fish feeding behaviors. Experimental results indicate that compared with the two-dimensional convolutional network (TSN), the proposed model improved average accuracy by 10.0% with only a 5.2% increase in parameters. Compared with the three-dimensional convolutional network (C3D), it achieved a 0.9% accuracy improvement while reducing parameters by 67.3%. Additionally, compared with the Swin Transformer model based on the Transformer architecture, it increased average accuracy by 4.1% while reducing parameters by 9.2%. The findings demonstrate that the model we designed is more accurate in identifying and classifying the feeding intensity of fish schools, providing a scientific basis for formulating precise feeding strategies for fish schools.

  • [1]
    MANDAL A, GHOSH A R. Role of artificial intelligence (AI) in fish growth and health status monitoring: a review on sustainable aquaculture[J]. Aquacult Int, 2024, 32: 2791-2820.
    [2]
    PRABU E, FELIX S, FELIX N, et al. An overview on significance of fish nutrition in aquaculture industry[J]. Int J Fish and Aquat Stud, 2017, 5(6): 349-355.
    [3]
    WANG Y Q, YU X N, LIU J C, et al. Research on quantitative method of fish feeding activity with semi-supervised based on appearance-motion representation[J]. Biosyst Eng, 2023, 230: 409-423. doi: 10.1016/j.biosystemseng.2023.04.011
    [4]
    YAMAMOTO T, SHIMA T, FURUITA H, et al. Influence of feeding diets with and without fish meal by hand and by self-feeders on feed intake, growth and nutrient utilization of juvenile rainbow trout (Oncorhynchus mykiss)[J]. Aquaculture, 2002, 214(1/2/3/4): 289-305.
    [5]
    瞿飞虎, 姜晓娜, 葛彦龙, 等. 黄河鲤对饲料蛋白质需求量研究[J]. 南方水产科学, 2024, 20(4): 124-132. doi: 10.12131/20230234
    [6]
    NARSALE S A, PRAKASH P, MOHALE H P, et al. Precision aquaculture: a way forward for sustainable agriculture[J]. J Exp Agric Int, 2024, 46(5): 83-97. doi: 10.9734/jeai/2024/v46i52360
    [7]
    LIU F, HUANG Y, ZHANG L, et al. Marine environmental pollution, aquatic products trade and marine fishery economy: an empirical analysis based on simultaneous equation model[J]. Ocean Coast Manag, 2022, 222: 106096. doi: 10.1016/j.ocecoaman.2022.106096
    [8]
    陈天兄, 范俊杰, 张日喜, 等. 水产养殖投喂装备发展现状研究[J]. 中国农机化学报, 2024, 45(4): 45-50.
    [9]
    ADEGBOYE M A, AIBINU A M, KOLO J G, et al. Incorporating intelligence in fish feeding system for dispensing feed based on fish feeding intensity[J]. IEEE Access, 2020, 8: 91948-91960. doi: 10.1109/ACCESS.2020.2994442
    [10]
    VOLKOFF H, RØNNESTAD I. Effects of temperature on feeding and digestive processes in fish[J]. Temperature, 2020, 7(4): 307-320. doi: 10.1080/23328940.2020.1765950
    [11]
    PRADANA H, HORIO K. Automatic controlling fish feeding machine using feature extraction of nutriment and ripple behavior[J]. Int J Innov Comput Inform Control, 2021, 17(5): 1483-1500.
    [12]
    UBINA N, CHENG S C, CHANG C C, et al. Evaluating fish feeding intensity in aquaculture with convolutional neural networks[J]. Aquac Eng, 2021, 94: 102178. doi: 10.1016/j.aquaeng.2021.102178
    [13]
    冯双星, 王丁弘, 潘良, 等. 基于轻量型S3D算法的鱼类摄食强度识别系统设计与试验[J]. 渔业现代化, 2023, 50(3): 79-86.
    [14]
    唐宸, 徐立鸿, 刘世晶. 基于光流法的鱼群摄食状态细粒度分类算法[J]. 农业工程学报, 2021, 37(9): 238-244.
    [15]
    YU X N, WANG Y Q, AN D, et al. Identification methodology of special behaviors for fish school based on spatial behavior characteristics[J]. Comput Electron Agric, 2021, 185: 106169. doi: 10.1016/j.compag.2021.106169
    [16]
    WU Y Q, XU H L, WU X H, et al. Identification of fish hunger degree with deformable attention transformer[J]. J Mar Sci Eng, 2024, 12(5): 726. doi: 10.3390/jmse12050726
    [17]
    王丁弘. 鱼群摄食动作时序检测方法研究与实现[D]. 上海: 上海海洋大学, 2023: 13-17.
    [18]
    张锋, 黄自强, 申启杨, 等. 边缘算力在智能水产养殖方面研究与应用[J]. 渔业现代化, 2024, 51(2): 53-60.
    [19]
    许品章. 锦鲤在中国[J]. 水族世界, 2013(2): 84-93.
    [20]
    YANG Z X, ZHU L C, WU Y, et al. Gated channel transformation for visual recognition[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020: 11794-11803.
    [21]
    隋金柱. 基于机器视觉的珍珠龙胆石斑鱼摄食行为研究[D]. 天津: 天津农学院, 2024: 19-20.
    [22]
    董延彬. 珍珠龙胆石斑鱼摄食强度判别模型研究[D]. 大连: 大连海洋大学, 2024: 11-12.
    [23]
    张丰登. 基于循环水养殖大口黑鲈摄食行为反馈的自适应投饲系统研究[D]. 杭州: 浙江大学, 2019: 14-23.
    [24]
    YE W, CHENG J, YANG F, et al. Two-stream convolutional network for improving activity recognition using convolutional long short-term memory networks[J]. IEEE Access, 2019, 7: 67772-67780. doi: 10.1109/ACCESS.2019.2918808
    [25]
    ZENG Y H, YANG X T, PAN L, et al. Fish school feeding behavior quantification using acoustic signal and improved Swin Transformer[J]. Comput Electron Agric, 2023, 204: 107580. doi: 10.1016/j.compag.2022.107580
    [26]
    TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3d convolutional networks[C]//2015 IEEE International Conference on Computer Vision (ICCV). Santiago: IEEE, 2015: 4489-4497.
    [27]
    CARREIRA J, ZISSERMAN A. Quo vadis, action recognition? a new model and the Kinetics dataset[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 6299-6308.
    [28]
    TRAN D, WANG H, TORRESANI L, et al. A closer look at spatiotemporal convolutions for action recognition[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6450-6459.
    [29]
    FEICHTENHOFER C, FAN H Q, MALIK J, et al. Slowfast networks for video recognition[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul: IEEE, 2019: 6202-6211.
    [30]
    LIU Z, NING J, CAO Y, et al. Video swin transformer[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans: IEEE, 2022: 3202-3211.
    [31]
    FAN H Q, XIONG B, MANGALAM K, et al. Multiscale vision transformers[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal: IEEE, 2021: 6824-6835.
  • Related Articles

    [1]QIAN Zhenjia, XU Jincheng, ZHANG Chenglin, YU Youbin, LIU Huang. Effect of different flow velocity on tail beat frequency and blood physiology of Plectropomus leopardus[J]. South China Fisheries Science, 2023, 19(2): 89-97. DOI: 10.12131/20220153
    [2]LIU Hongyan, FU Zhengyi, YU Gang, MA Zhenhua. Study on relationship between body mass and blood indexes of juvenile Thunnus albacares[J]. South China Fisheries Science, 2023, 19(1): 173-178. DOI: 10.12131/20220077
    [3]FANG Wei, ZHOU Shengjie, ZHAO Wang, YANG Rui, HU Jing, YU Gang, MA Zhenhua. Correlation and path analysis of morphological traits to body mass of juvenile Thunnus albacores[J]. South China Fisheries Science, 2021, 17(1): 52-58. DOI: 10.12131/20200158
    [4]ZHAO Hongxia, HU Junru, HUANG Hanhua, CHEN Bing, CAO Junming. Effect of dietary β-glucan on blood metabolites and immunity of Litopenaeus vannamei at low salinities[J]. South China Fisheries Science, 2020, 16(5): 87-98. DOI: 10.12131/20200046
    [5]WU Bin, FANG Chunlin, HE Gang, FU Peifeng. FiSAT II Software supported Length based Cohort Analysis[J]. South China Fisheries Science, 2013, 9(4): 94-98. DOI: 10.3969/j.issn.2095-0780.2013.04.016
    [6]HUANG Guangzhong, HU Hui, XIAO Keyu, LUO Shimin, XIE Peirong, OUYANG Juying. Effects of plant extract from grape seed and sweet wormwood on intestinal digestive enzyme activities and blood biochemical parameters of eel (Monopterus albus)[J]. South China Fisheries Science, 2013, 9(2): 70-75. DOI: 10.3969/j.issn.2095-0780.2013.02.012
    [7]LIU Zaijun, CEN Jianwei, LI Laihao, YANG Xianqing, HAO Shuxian, WEI Ya, ZHOU Wanjun. Thoughts and prospect of comprehensive utilization of tilapia blood[J]. South China Fisheries Science, 2012, 8(2): 76-80. DOI: 10.3969/j.issn.2095-0780.2012.02.012
    [8]HUANG Zhong, LIN Heizhao, NIU Jin, LV Guomin, CHEN Xu, CHEN Mingqiang. Effects of dietary inositol on growth, feed utilization and blood biochemical index of juvenile pompano (Trachinotus ovatus)[J]. South China Fisheries Science, 2011, 7(3): 39-44. DOI: 10.3969/j.issn.2095-0780.2011.03.007
    [9]YUAN Fenghua, LIN Heizhe, LI Zhuojia, LU Xin, YANG Qibin. Effects of dietary Bacillus licheniformis on blood physiological-biochemical indices in cultured Lates calarifer[J]. South China Fisheries Science, 2009, 5(2): 45-50. DOI: 10.3969/j.issn.1673-2227.2009.02.008
    [10]SU Youlu, XU Liwen, FENG Juan, GUO Zhixun, WANG Jiangyong. Study on the morphology of peripheral blood cells of juvenile cobia Rachycentron canadum[J]. South China Fisheries Science, 2007, 3(1): 48-53.
  • Cited by

    Periodical cited type(1)

    1. 张雪娇,张淼,黄琴,朱晓晓,聂慧君,孔宇. 淡水池塘养殖尾水治理研究现状及进展. 绿色科技. 2025(02): 220-227 .

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return