ZHAO Hongxia, HU Junru, HUANG Hanhua, CHEN Bing, CAO Junming. Effect of dietary β-glucan on blood metabolites and immunity of Litopenaeus vannamei at low salinities[J]. South China Fisheries Science, 2020, 16(5): 87-98. DOI: 10.12131/20200046
Citation: ZHAO Hongxia, HU Junru, HUANG Hanhua, CHEN Bing, CAO Junming. Effect of dietary β-glucan on blood metabolites and immunity of Litopenaeus vannamei at low salinities[J]. South China Fisheries Science, 2020, 16(5): 87-98. DOI: 10.12131/20200046

Effect of dietary β-glucan on blood metabolites and immunity of Litopenaeus vannamei at low salinities

More Information
  • Received Date: March 16, 2020
  • Revised Date: April 26, 2020
  • Accepted Date: May 08, 2020
  • Available Online: September 27, 2020
  • In order to study the effects of long-term feeding β-1,3-glucan on blood metabolites and muscle immune related enzyme activities of cultured Litopenaeus vannamei at low salinity (5), we fed the fish with initial body mass of (0.65 ± 0.01) g with four diets containing 0, 250, 500 and 1 000 mg·kg−1 β-1,3-glucan, respectively, for 84 d. The results show that the highest values of serum lactate and muscle lysozyme activity appeared on the 14th day after ingestion. Levels of total protein, glucose, cholesterol and triglyceride reached their maximum levels at 42nd day. Activities of superoxide dismutase, catalase and anti-O2 reached their maximum levels at 56th day. The levels of glucose, cholesterol, triglyceride, lactate and superoxide dismutase were significantly higher in 250 mg·kg−1 β-1,3-glucan-containing diets than those in the control diet (P<0.05). The contents of total protein and anti-O2 were significantly higher in 500 mg·kg−1 β-1,3-glucan-containing diet than those in the control diet (P<0.05). The activities of catalase and lysozyme were significantly higher in 250 or 500 mg·kg−1 β-1,3-glucan-containing diets than those in the control diet (P<0.05). Feeding 250 or 500 mg·kg−1 β-1,3-glucan diets for 14, 42 or 56 d is recommended to improve shrimp's nutrition metabolism and immune ability.

  • [1]
    SAOUD I P, DAVIS D A, ROUSE D B. Suitability studies of inland well waters for Litopenaeus vannamei culture[J]. Aquaculture, 2003, 217(1): 373-383.
    [2]
    BRITOA R, CHIMAL M E, ROSAS C. Effect of salinity in survival, growth, and osmotic capacity of early juveniles of Farfantepenaeus brasiliensis (Decapoda: Penaeidae)[J]. J Exp Mar Biol Ecol, 2000, 244(2): 253-263. doi: 10.1016/S0022-0981(99)00142-2
    [3]
    WANG L U, CHEN J C. The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus at different salinity levels[J]. Fish Shellfish Immunol, 2005, 18(4): 269-278. doi: 10.1016/j.fsi.2004.07.008
    [4]
    MELLO M M M, FARIA C F P, ZANUZZO F S, et al. β-glucan modulates cortisol levels in stressed pacu (Piaractus mesopotamicus) inoculated with heat-killed Aeromonas hydrophila[J]. Fish Shellfish Immun, 2019, 93(6): 1076-1083.
    [5]
    JAVAD J M, ABDOLMOHAMMAD A K, HAME P, et al. Effects of dietary β-glucan, mannan oligosaccharide, Lactobacillus plantarum and their combinations on growth performance, immunity and immune related gene expression of Caspian trout, Salmo trutta caspius (Kessler, 1877)[J]. Fish Shellfish Immun, 2019, 91(2): 202-208.
    [6]
    ZHAO H X, CAO J M, WANG A L, et al. Effect of long-term administration of dietary β-1, 3-glucan on growth, physiological and immune responses in Litopenaeus vannamei (Boone, 1931)[J]. Aquacult Int, 2012, 20(1): 145-158. doi: 10.1007/s10499-011-9448-6
    [7]
    BAI N, ZHANG W B, MAI K S, et al. Effects of discontinuous administration of β-glucan and glycyrrhizin on the growth and immunity of white shrimp Litopenaeus vannamei[J]. Aquaculture, 2010, 306(2): 218-224.
    [8]
    SORAAT A, SASIMANAS U, CHEEWARAT P, et al. Feeding-regimen of β-glucan to enhance innate immunity and disease resistance of Nile tilapia, Oreochromis niloticus Linn., against Aeromonas hydrophila and Flavobacterium columnare[J]. Fish Shellfish Immun, 2019, 87(1): 120-128.
    [9]
    ZHAO H X, CAO J M, WANG A L, et al. Effect of dietary β-1, 3-glucan on the immune response of Litopenaeus vannamei exposed to nitrite-N[J]. Aquacult Nutr, 2012, 18(3): 272-280. doi: 10.1111/j.1365-2095.2011.00893.x
    [10]
    CHAND R K, SAHOO P K, KUMARI J, et al. Administration of bovine lactoferrin influences the immune ability of the giant freshwater prawn Macrobrachium rosenbergii (de Man) and its resistance against Aeromonas hydrophila infection and nitrite stress[J]. Fish Shellfish Immun, 2006, 21(1): 119-129.
    [11]
    LI T, LI E, SUO Y, et al. Energy metabolism and metabolomics response of Pacific white shrimp Litopenaeus vannamei to sulfide toxicity[J]. Aquat Toxicol, 2017, 183(1): 28-37.
    [12]
    SHEN M, CUI Y, WANG R, et al. Acute response of Pacific white shrimp Litopenaeus vannamei to high-salinity reductions in osmosis-, metabolism-, and immune-related enzyme activities[J]. Aquacult Int, 2020, 28(1): 31-39. doi: 10.1007/s10499-019-00441-y
    [13]
    Association of Official Analytical Chemists (AOAC). Official Methods of Analysis[S]. 14th ed. Arlington, VA: 1984: 503-515.
    [14]
    ZHANG L L. Effects of dissolved oxygen, starvation, temperature, and salinity on the locomotive ability of juvenile Chinese shrimp Fenneropenaeus chinensis[J]. Ethol Ecol Evol, 2019, 31(2): 155-172. doi: 10.1080/03949370.2018.1526215
    [15]
    MALTEZ L C, BARBAS L A L, OKAMOTO M H, et al. Secondary stress responses in juvenile Brazilian flounder, Paralichthys orbignyanus, throughout and after exposure to sublethal levels of ammonia and nitrite[J]. J World Aquacult Soc, 2019, 50(2): 346-358. doi: 10.1111/jwas.12497
    [16]
    PERAZZOLO L M, GARGIONI R, OGLIARI P, et al. Evaluation of some hemato-immunological parameters in the shrimp Farfantepenaeus paulensis submitted to environmental and physiological stress[J]. Aquaculture, 2002, 214(1): 19-33.
    [17]
    CUZON G, LAWRENCE A, GAXIOLA G, et al. Nutrition of Litopenaeus vannamei reared in tanks or in ponds[J]. Aquaculture, 2004, 235(1): 513-551.
    [18]
    LÓPEZ N, CUZONB G, GAXIOLAC G, et al. Physiological, nutritional, and immunological role of dietary β 1-3 glucan and ascorbic acid 2-monophosphate in Litopenaeus vannamei juveniles[J]. Aquaculture, 2003, 224(1): 223-243.
    [19]
    胡亚军, 胡毅, 石勇, 等. 不同形式蛋氨酸对黄鳝生长、血清生化、血清游离氨基酸含量及肌肉品质的影响[J]. 水生生物学报, 2019, 43(6): 1155-1163. doi: 10.7541/2019.136
    [20]
    MARANGOS C, BROGREN C H, ALLIOT E. The influence of water salinity on the free amino acid concentration in muscle and hepatopancreas of adult shrimps, Penaeus japonicus[J]. Biochem Syst Ecol, 1989, 17(3): 589-594.
    [21]
    IMSLAND A K, FOSS A, GUNNARSON S, et al. The interaction of temperature and salinity on growth and food conversion in juvenile turbot (Soophthalmus maximum)[J]. Aquaculture, 2001, 198(3): 353-367.
    [22]
    LI H, XU C, ZHOU L, et al. Beneficial effects of dietary β-glucan on growth and health status of Pacific white shrimp Litopenaeus vannamei at low salinity[J]. Fish Shellfish Immun, 2019, 91(4): 315-324.
    [23]
    HILL A D, TAYLOR A C, STRANG R H C. Physiological and metabolic responses of the shore crab Carcinus maenas (L.) during environmental anoxia and subsequent recovery[J]. J Exp Mar Biol Ecol, 1991, 150(1): 31-50. doi: 10.1016/0022-0981(91)90104-5
    [24]
    胡文娟, 房文红, 江敏, 等. 淡水养殖凡纳滨对虾IHHNV-WSSV共感染率调查分析及其对免疫相关酶活性的影响[J]. 上海海洋大学学报, 2015, 24(5): 685-693.
    [25]
    NIU J, XIE S W, FANG H H, et al. Dietary values of macroalgae Porphyra haitanensis in Litopenaeus vannamei under normal rearing and WSSV challenge conditions: effect on growth, immune response and intestinal microbiota[J]. Fish Shellfish Immun, 2018, 81(1): 135-149.
    [26]
    MAHER P, HANNEKEN A. Flavonoids protect retinal ganglion cells from oxidative stress-induced death[J]. Invest Ophth Vis Sci, 2005, 46(12): 4796-4803. doi: 10.1167/iovs.05-0397
    [27]
    CHANG C F, SU M S, CHEN H Y, et al. Dietary β-1, 3-glucan effectively improves immunity and survival of Penaeus monodon challenged with white spot syndrome virus[J]. Fish Shellfish Immun, 2003, 15(4): 297-310. doi: 10.1016/S1050-4648(02)00167-5
    [28]
    CHENG W, LIU C H, KUO C M, et al. Dietary administration of solium alginate enhances the immune ability of white shrimp Litopenaeus vannamei and its resistance against Vibrio alginolyticus[J]. Fish Shellfish Immun, 2005, 18(1): 1-12. doi: 10.1016/j.fsi.2004.03.002
    [29]
    LIU C H, YEH S P, KUO C M, et al. The effect of sodium alginate on the immune response of tiger shrimp via dietary administration: activity and gene transcription[J]. Fish Shellfish Immun, 2006, 21(4): 442-53. doi: 10.1016/j.fsi.2006.02.003
    [30]
    宋泰, 黄艇, 张晨捷, 等. 养殖水体中二种溶解态铜对凡纳滨对虾生长和免疫功能的影响[J]. 上海海洋大学学报, 2019, 28(1): 75-83.
    [31]
    方金龙, 王元, 房文红, 等. 氨氮胁迫下白斑综合征病毒对凡纳滨对虾的致病性[J]. 南方水产科学, 2017, 13(4): 52-58.
    [32]
    HUANG X, ZHOU H, ZHANG H. The effect of Sargassum fusiforme polysaccharide extracts on vibriosis resistance and immune activity of the shrimp, Fenneropenaeus chinensis[J]. Fish Shellfish Immun, 2006, 20(5): 750-757. doi: 10.1016/j.fsi.2005.09.008
    [33]
    BAGNI M, ROMANO N, FINOIA M G, et al. Short- and long-term effects of a dietary yeast β-glucan (Macrogard) and alginic acid (Ergosan) preparation on immune response in sea bass (Dicentrarchus labrax)[J]. Fish Shellfish Immun, 2005, 18(4): 311-325. doi: 10.1016/j.fsi.2004.08.003
    [34]
    de BAULNY M O, QUENTEL C, FOURNIER V, et al. Effect of long-term oral administration of β-glucan as an immunostimulant or an adjuvant on some non-specific parameters of the immune response of turbot Scophthalmus maximus[J]. Dis Aquat Organ, 1996, 26(2): 139-47.
  • Related Articles

    [1]LIU Chenyuan, SHANG Yukun, MAO Huili, LI Saibo, WANG Qiankun, ZHANG Xingxing, ZHU Lixing, ZHANG Ziyi, SHEN Changchun, GUAN Jianyi. Isolation and identification of a pathogenic Nocardia seriolae strain XXLX2 from seabass and comparative genomic analysis[J]. South China Fisheries Science. DOI: 10.12131/20240254
    [2]YANG Yu, ZHENG Wenwen, YU Wenbing, XU Yingjie, ZHANG Xing, SONG Xuehong, QIN Fenju. Study on bacteriostatic activity of nanocerium dioxide against two aquatic pathogenic Vibrio spp.[J]. South China Fisheries Science, 2024, 20(4): 144-153. DOI: 10.12131/20240046
    [3]SU Wenxiao, DENG Yiqin, ZANG Shujun, WANG Qian, LIN Ziyang, FENG Juan. Effects of cbpD gene on virulence and related biological characteristics of Vibrio alginolyticus[J]. South China Fisheries Science, 2022, 18(5): 81-90. DOI: 10.12131/20220025
    [4]Yuting WANG, Rongxiang ZHOU, Jihong LI, Yao ZHANG, Tingting ZHOU, Wencai CHEN, Yun PENG, Manli TANG, Guizhen MA, Jianhe XU. Isolation and identification of vibrio resistant photosynthetic bacteria and degradation of nitrite nitrogen and ammonia nitrogen[J]. South China Fisheries Science, 2021, 17(5): 26-33. DOI: 10.12131/20210016
    [5]WANG Yang, ZHAO Jing, WANG Jingru, LUO Yunlong, LIU Ying, BAI Dongqing, SHAO Peng, LI Yuhan. Inhibitory activity of home-made garbage enzyme against aquatic pathogens and isolation and identification of its fermentation strains[J]. South China Fisheries Science, 2020, 16(6): 97-104. DOI: 10.12131/20200101
    [6]YU Lujun, MIAO Zongyu, CAI Lei, WEI Yuanzheng, HUANG Ren, LI Jianjun. Pathogenicity and impact factors of pathogen causing ulcer disease on Mugilogobius chulae[J]. South China Fisheries Science, 2018, 14(5): 45-52. DOI: 10.3969/j.issn.2095-0780.2018.05.006
    [7]GU Liangbin, XU Liwen, FENG Juan, SU YouLu, LIU Guangfeng, GUO Zhixun. Identification and drug sensitive test of bacterial Pathogens from Plectropomus leopardus with tail fester disease[J]. South China Fisheries Science, 2015, 11(4): 71-80. DOI: 10.3969/j.issn.2095-0780.2015.04.011
    [8]YANG Qiuhua, GE Hui, FANG Lüping, LIN Qi, HE Libin, ZHOU Chen. Identification of Vibrio tubiashii isolated from diseased pond-cultured sea cucumbers (Apostichopus japonicus)[J]. South China Fisheries Science, 2014, 10(4): 45-51. DOI: 10.3969/j.issn.2095-0780.2014.04.008
    [9]WANG Ruixuan, GENG Yujing, FENG Juan, WANG Jiangyong. Identification and analysis of resistant plasmid of pathogenic bacteria Vibrio harveyi isolated from Haliotis diversicolor[J]. South China Fisheries Science, 2012, 8(2): 1-6. DOI: 10.3969/j.issn.2095-0780.2012.02.001
    [10]WANG Jiangyong, SUN Xiuxiu, WANG Ruixuan, SU Youlu. Isolation, identification and phylogenetic analysis of pathogen from Haliotis diversicolor Reeve with withering syndrome[J]. South China Fisheries Science, 2010, 6(5): 21-26. DOI: 10.3969/j.issn.1673-2227.2010.05.004

Catalog

    Article views (2663) PDF downloads (54) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return