HU Xiaojuan, YANG Keng, WEN Guoliang, SU Haochang, XU Yunna, XU Chuangwen, XU Yu, XU Wujie, CAO Yucheng. Algicidal effect of bacteria CZBC1 on Microcystis aeruginosa in chloride type saline-alkali water[J]. South China Fisheries Science, 2024, 20(5): 169-175. DOI: 10.12131/20240142
Citation: HU Xiaojuan, YANG Keng, WEN Guoliang, SU Haochang, XU Yunna, XU Chuangwen, XU Yu, XU Wujie, CAO Yucheng. Algicidal effect of bacteria CZBC1 on Microcystis aeruginosa in chloride type saline-alkali water[J]. South China Fisheries Science, 2024, 20(5): 169-175. DOI: 10.12131/20240142

Algicidal effect of bacteria CZBC1 on Microcystis aeruginosa in chloride type saline-alkali water

More Information
  • Received Date: June 23, 2024
  • Revised Date: August 14, 2024
  • Accepted Date: September 02, 2024
  • Available Online: September 04, 2024
  • In order to develop the algaolytic bacterial agent for chloride type saline-alkali water, we selected the algaolytic bacterial strain Bacillus cereus CZBC1, and investigated the algaolytic effects of the filtrate group (FG), the bacterium group (BG), and the bacterial solution group (BSG) in the chloride type saline-alkali water with the initial density of Microcystis aeruginosa of 105 and 106 cell·mL−1, respectively. The results show that the strain CZBC1 had both direct and indirect ways of dissolving microalgae. When strain CZBC1 in FG, BG and BSG acted on M. aeruginosa, their microalgal cells could deform, fade or rupture, playing a good role in dissolving algae in chloride type saline-alkali water. When the initial microalgal density was 105 cell·mL−1, the microalgal density could be reduced to 2.30×10 cell·mL−1 in BSG and 1.27×102 cell·mL−1 in BG on the 6th day, which were extremely significantly lower than that in the control group (CG) (3.65×105 cell·mL−1, p<0.01), and the highest algicidal rates in both groups could reach over 99%. When the initial microalgal density was 106 cell·mL−1, the microalgal density could be reduced to 8.30×105 cell·mL−1 in BSG on the 6th day, which was significantly lower than that in CG (3.17×106 cell·mL−1, p<0.05), and its highest algicidal rate could reach over 78.8%. The algicidal effect of BSG was better than that of BG and FG. The results indicate that in order to prevent and control microcystis blooms in chloride type saline alkali ponds, it is recommended to prioritize prevention and regularly apply algicidal bacteria CZBC1 to prevent and control the formation of harmful algal blooms.

  • [1]
    李媛, 张家卫, 魏杰, 等. 我国蓝藻水华的发生机理、危害及防控利用研究进展[J]. 微生物学杂志, 2015, 35(4): 93-97. doi: 10.3969/j.issn.1005-7021.2015.04.016
    [2]
    徐煜, 徐武杰, 文国樑, 等. 颤藻浓度和水温对凡纳滨对虾相应颤藻粗提液毒性的影响[J]. 南方水产科学, 2017, 13(1): 26-32.
    [3]
    DUAN Y F, XIONG D L, WANG Y, et al. Effects of Microcystis aeruginosa and microcystin-LR on intestinal histology, immune response, and microbial community in Litopenaeus vannamei[J]. Environ Pollut, 2020, 265: 114774. doi: 10.1016/j.envpol.2020.114774
    [4]
    GAO J F, ZUO H L, YANG L W, et al. Long-term influence of cyanobacterial bloom on the immune system of Litopenaeus vannamei[J]. Fish Shellfish Immunol, 2017, 61: 79-85. doi: 10.1016/j.fsi.2016.12.015
    [5]
    朱润唐, 陶红, 来琦芳, 等. 盐碱水养殖固体废物生物炭对硫酸盐型盐碱土的改良效果评价[J]. 海洋渔业, 2024, 46(2): 195-205.
    [6]
    来琦芳, 幺宗利, 高鹏程, 等. 盐碱水环境与增养殖种类[M]. 北京: 中国农业出版社, 2021: 2-3.
    [7]
    胡红浪, 来琦芳, 幺宗利, 等. 盐碱水绿色养殖技术模式[M]. 北京: 中国农业出版社, 2021: 3.
    [8]
    曹煜成. 虾池微藻优势种群调控机理[D]. 广州: 中山大学, 2014: 54-56.
    [9]
    苏发文, 高鹏程, 来琦芳, 等. 铜绿微囊藻和小球藻对水环境pH的影响[J]. 中国水产科学, 2016, 23(6): 1380-1388.
    [10]
    YANG Y F, HU X J, ZHANG J, et al. Community level physiological study of algicidal bacteria in the phycosphere of Skeletonema costatum and Scrippsiella trochoidea[J]. Harmful Algae, 2013, 28: 88-96. doi: 10.1016/j.hal.2013.05.015
    [11]
    LIU F, ZHU S N, QIN L, et al. Isolation, identification of algicidal bacteria and contrastive study on algicidal properties against Microcystis aeruginosa[J]. Biochem Eng J, 2022, 185: 108525. doi: 10.1016/j.bej.2022.108525
    [12]
    黄洪辉, 韩贝贝, 张书飞, 等. 海洋溶藻菌的研究进展[J]. 南方水产科学, 2019, 15(5): 126-132.
    [13]
    GENG Y Q, XING R L, ZHANG H X, et al. Inhibitory effect and mechanism of algicidal bacteria on Chaetomorpha valida[J]. Sci Total Environ, 2024, 914: 169850. doi: 10.1016/j.scitotenv.2023.169850
    [14]
    曹煜成, 王丽花, 文国樑, 等. 一株溶解池塘颤藻的蜡样芽胞杆菌菌株CZBC1及其应用: CN201310203745.3[P]. 2014-12-17.
    [15]
    HU X J, WEN G L, XU W J, et al. Effects of the algicidal bacterium CZBC1 on microalgal and bacterial communities in shrimp culture[J]. Aquac Env Interac, 2019, 11: 279-290. doi: 10.3354/aei00311
    [16]
    HU X J, XU Y, SU H C, et al. Algicidal bacterium CZBC1 inhibits the growth of Oscillatoria chlorina, Oscillatoria tenuis, and Oscillatoria planctonica[J]. AMB Express, 2019, 9: 144. doi: 10.1186/s13568-019-0872-8
    [17]
    王善龙, 曹煜成, 徐煜, 等. 蜡样芽孢杆菌对对虾养殖水体微藻群落的调控研究[J]. 南方水产科学, 2016, 12(1): 9-16.
    [18]
    赵度宾, 李月红, 来琦芳, 等. 益生菌在盐碱养殖水体中调控作用的研究进展[J]. 水产科技情报, 2023, 50(1): 53-58.
    [19]
    周成夷, 幺宗利, 来琦芳, 等. 盐碱水中地衣芽孢杆菌抑制铜绿微囊藻生长研究[J]. 水生态学杂志, 2023, 44(6): 136-141.
    [20]
    ZENG Y D, WANG J Y, YANG C Y, et al. A Streptomyces globi sporus strain kills Microcystis aeruginosa via cell-to-cell contact[J]. Sci Total Environ, 2021, 769: 144489. doi: 10.1016/j.scitotenv.2020.144489
    [21]
    GUMBO J R, CLOETE T E. The mechanism of Microcystis aeruginosa death upon exposure to Bacillus mycoides[J]. Phys Chem Earth, 2011, 36(14): 881-886.
    [22]
    KO S R, JEONG Y J, CHO S H, et al. Functional role of a novel algicidal compound produced by Pseudoruegeria sp. M32A2M on the harmful algae Alexandrium catenella[J]. Chemosphere, 2022, 300: 134535. doi: 10.1016/j.chemosphere.2022.134535
    [23]
    JIA Y, LU J Z, WANG M, et al. Algicidal bacteria in phycosphere regulate free-living Symbiodinium fate via triggering oxidative stress and photosynthetic system damage[J]. Ecotox Environ Safe, 2023, 263: 115369. doi: 10.1016/j.ecoenv.2023.115369
    [24]
    SU J F, MA M, WEI L, et al. Algicidal and denitrification characterization of Acinetobacter sp. J25 against Microcystis aeruginosa and microbial community in eutrophic landscape water[J]. Mar Pollut Bull, 2016, 107(1): 233-239. doi: 10.1016/j.marpolbul.2016.03.066
    [25]
    王佳, 洪桂云, 张瑾. 一株铜绿微囊藻溶藻菌的分离鉴定和溶藻特性[J]. 安徽农业大学学报, 2016, 43(5): 768-773.
    [26]
    黄现恩. 几株微囊藻毒素降解菌和溶藻菌的分离鉴定及作用效果[D]. 苏州: 苏州大学, 2015: 35-37.
    [27]
    IRIARTE A, PURDIE D A. Factors controlling the timing of major spring bloom events in an UK south coast estuary[J]. Estuar Coast Shelf Sci, 2004, 61(4): 679-690. doi: 10.1016/j.ecss.2004.08.002
  • Related Articles

    [1]CUI Junwei, ZHENG Huina, CAO Wenhong, QIN Xiaoming, GAO Jialong, LIN Haisheng, CHEN Zhongqin. Effect of blanching treatment on oyster meat quality during refrigeration and frozen storage[J]. South China Fisheries Science, 2025, 21(1): 14-27. DOI: 10.12131/20240174
    [2]LUO Jing, LI Min, ZHANG Ying, LIU Yan, GUAN Zhiqiang. Effect of different drying methods on volatile components of tilapia fillets analyzed by electronic nose combined with GC-MS[J]. South China Fisheries Science, 2022, 18(1): 135-143. DOI: 10.12131/20210098
    [3]YE Fan, CHEN Kang, TAO Meijie, LI Simin, CAO Yalun, DAI Zhiyuan. Comparison of quality and volatile components among five brands of cod sausages[J]. South China Fisheries Science, 2019, 15(6): 96-105. DOI: 10.12131/20190120
    [4]KONG Chunli, WANG Huiyi, LUO Yongkang. Quality change in lightly salted and sugar-salted sturgeon fillets stored at 4 ℃[J]. South China Fisheries Science, 2016, 12(2): 95-101. DOI: 10.3969/j.issn.2095-0780.2016.02.014
    [5]WU Hua, YIN Xiaofei, LUO Yongkan, SHEN Huixing. Quality changes of bighead carp (Aristichthys nobilis) fillets treated with salt during storage at 4 ℃[J]. South China Fisheries Science, 2013, 9(4): 69-74. DOI: 10.3969/j.issn.2095-0780.2013.04.012
    [6]ZHANG Yuemei, BAO Yulong, LUO Yongkang, WANG Hang. Changes of biogenic amines and quality indicators of grass carp (Ctenpharyngodon idellus) during chilled storage and effect on biogenic amines during thermal processing[J]. South China Fisheries Science, 2013, 9(4): 56-61. DOI: 10.3969/j.issn.2095-0780.2013.04.010
    [7]LU Han, LUO Yongkang, SHI Ce, FENG Ligeng. Correlation between impedance and freshness indicators of silver carp (Hypophthalmichthys molitrix) during 0 ℃ storage[J]. South China Fisheries Science, 2012, 8(5): 80-85. DOI: 10.3969/j.issn.2095-0780.2012.05.012
    [8]HONG Hui, ZHU Sichao, LUO Yongkang, YU Jian. Quality changes of bighead carp (Aristichthys nobilis) during chilled and partial freezing storage[J]. South China Fisheries Science, 2011, 7(6): 7-12. DOI: 10.3969/j.issn.2095-0780.2011.06.002
    [9]QIN Pei-wen, JI Li-li, FAN Run-zhen, XIAO Bi-hong, TANG Xiao-dan, SONG Wen-dong. Analysis of volatile components and trace elements in flesh of Pinctada martensii with black shell disease[J]. South China Fisheries Science, 2010, 6(2): 35-40. DOI: 10.3969/j.issn.1673-2227.2010.02.006
    [10]GUO Quan-you, YANG Xian-shi. Comparison of different bacteria growth models on chilled Pseudosciaena crocea[J]. South China Fisheries Science, 2005, 1(5): 44-49.
  • Cited by

    Periodical cited type(1)

    1. 王一博,初文华,张怀志,曹宇,崔森琦,武树龙. 基于CFD的拖网网板模型参数对水动力试验的影响研究. 渔业现代化. 2023(05): 101-112 .

    Other cited types(0)

Catalog

    Article views (433) PDF downloads (35) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return