HU Xiaojuan, YANG Keng, WEN Guoliang, SU Haochang, XU Yunna, XU Chuangwen, XU Yu, XU Wujie, CAO Yucheng. Algicidal effect of bacteria CZBC1 on Microcystis aeruginosa in chloride type saline-alkali water[J]. South China Fisheries Science, 2024, 20(5): 169-175. DOI: 10.12131/20240142
Citation: HU Xiaojuan, YANG Keng, WEN Guoliang, SU Haochang, XU Yunna, XU Chuangwen, XU Yu, XU Wujie, CAO Yucheng. Algicidal effect of bacteria CZBC1 on Microcystis aeruginosa in chloride type saline-alkali water[J]. South China Fisheries Science, 2024, 20(5): 169-175. DOI: 10.12131/20240142

Algicidal effect of bacteria CZBC1 on Microcystis aeruginosa in chloride type saline-alkali water

More Information
  • Received Date: June 23, 2024
  • Revised Date: August 14, 2024
  • Accepted Date: September 02, 2024
  • Available Online: September 04, 2024
  • In order to develop the algaolytic bacterial agent for chloride type saline-alkali water, we selected the algaolytic bacterial strain Bacillus cereus CZBC1, and investigated the algaolytic effects of the filtrate group (FG), the bacterium group (BG), and the bacterial solution group (BSG) in the chloride type saline-alkali water with the initial density of Microcystis aeruginosa of 105 and 106 cell·mL−1, respectively. The results show that the strain CZBC1 had both direct and indirect ways of dissolving microalgae. When strain CZBC1 in FG, BG and BSG acted on M. aeruginosa, their microalgal cells could deform, fade or rupture, playing a good role in dissolving algae in chloride type saline-alkali water. When the initial microalgal density was 105 cell·mL−1, the microalgal density could be reduced to 2.30×10 cell·mL−1 in BSG and 1.27×102 cell·mL−1 in BG on the 6th day, which were extremely significantly lower than that in the control group (CG) (3.65×105 cell·mL−1, p<0.01), and the highest algicidal rates in both groups could reach over 99%. When the initial microalgal density was 106 cell·mL−1, the microalgal density could be reduced to 8.30×105 cell·mL−1 in BSG on the 6th day, which was significantly lower than that in CG (3.17×106 cell·mL−1, p<0.05), and its highest algicidal rate could reach over 78.8%. The algicidal effect of BSG was better than that of BG and FG. The results indicate that in order to prevent and control microcystis blooms in chloride type saline alkali ponds, it is recommended to prioritize prevention and regularly apply algicidal bacteria CZBC1 to prevent and control the formation of harmful algal blooms.

  • [1]
    李媛, 张家卫, 魏杰, 等. 我国蓝藻水华的发生机理、危害及防控利用研究进展[J]. 微生物学杂志, 2015, 35(4): 93-97. doi: 10.3969/j.issn.1005-7021.2015.04.016
    [2]
    徐煜, 徐武杰, 文国樑, 等. 颤藻浓度和水温对凡纳滨对虾相应颤藻粗提液毒性的影响[J]. 南方水产科学, 2017, 13(1): 26-32.
    [3]
    DUAN Y F, XIONG D L, WANG Y, et al. Effects of Microcystis aeruginosa and microcystin-LR on intestinal histology, immune response, and microbial community in Litopenaeus vannamei[J]. Environ Pollut, 2020, 265: 114774. doi: 10.1016/j.envpol.2020.114774
    [4]
    GAO J F, ZUO H L, YANG L W, et al. Long-term influence of cyanobacterial bloom on the immune system of Litopenaeus vannamei[J]. Fish Shellfish Immunol, 2017, 61: 79-85. doi: 10.1016/j.fsi.2016.12.015
    [5]
    朱润唐, 陶红, 来琦芳, 等. 盐碱水养殖固体废物生物炭对硫酸盐型盐碱土的改良效果评价[J]. 海洋渔业, 2024, 46(2): 195-205.
    [6]
    来琦芳, 幺宗利, 高鹏程, 等. 盐碱水环境与增养殖种类[M]. 北京: 中国农业出版社, 2021: 2-3.
    [7]
    胡红浪, 来琦芳, 幺宗利, 等. 盐碱水绿色养殖技术模式[M]. 北京: 中国农业出版社, 2021: 3.
    [8]
    曹煜成. 虾池微藻优势种群调控机理[D]. 广州: 中山大学, 2014: 54-56.
    [9]
    苏发文, 高鹏程, 来琦芳, 等. 铜绿微囊藻和小球藻对水环境pH的影响[J]. 中国水产科学, 2016, 23(6): 1380-1388.
    [10]
    YANG Y F, HU X J, ZHANG J, et al. Community level physiological study of algicidal bacteria in the phycosphere of Skeletonema costatum and Scrippsiella trochoidea[J]. Harmful Algae, 2013, 28: 88-96. doi: 10.1016/j.hal.2013.05.015
    [11]
    LIU F, ZHU S N, QIN L, et al. Isolation, identification of algicidal bacteria and contrastive study on algicidal properties against Microcystis aeruginosa[J]. Biochem Eng J, 2022, 185: 108525. doi: 10.1016/j.bej.2022.108525
    [12]
    黄洪辉, 韩贝贝, 张书飞, 等. 海洋溶藻菌的研究进展[J]. 南方水产科学, 2019, 15(5): 126-132.
    [13]
    GENG Y Q, XING R L, ZHANG H X, et al. Inhibitory effect and mechanism of algicidal bacteria on Chaetomorpha valida[J]. Sci Total Environ, 2024, 914: 169850. doi: 10.1016/j.scitotenv.2023.169850
    [14]
    曹煜成, 王丽花, 文国樑, 等. 一株溶解池塘颤藻的蜡样芽胞杆菌菌株CZBC1及其应用: CN201310203745.3[P]. 2014-12-17.
    [15]
    HU X J, WEN G L, XU W J, et al. Effects of the algicidal bacterium CZBC1 on microalgal and bacterial communities in shrimp culture[J]. Aquac Env Interac, 2019, 11: 279-290. doi: 10.3354/aei00311
    [16]
    HU X J, XU Y, SU H C, et al. Algicidal bacterium CZBC1 inhibits the growth of Oscillatoria chlorina, Oscillatoria tenuis, and Oscillatoria planctonica[J]. AMB Express, 2019, 9: 144. doi: 10.1186/s13568-019-0872-8
    [17]
    王善龙, 曹煜成, 徐煜, 等. 蜡样芽孢杆菌对对虾养殖水体微藻群落的调控研究[J]. 南方水产科学, 2016, 12(1): 9-16.
    [18]
    赵度宾, 李月红, 来琦芳, 等. 益生菌在盐碱养殖水体中调控作用的研究进展[J]. 水产科技情报, 2023, 50(1): 53-58.
    [19]
    周成夷, 幺宗利, 来琦芳, 等. 盐碱水中地衣芽孢杆菌抑制铜绿微囊藻生长研究[J]. 水生态学杂志, 2023, 44(6): 136-141.
    [20]
    ZENG Y D, WANG J Y, YANG C Y, et al. A Streptomyces globi sporus strain kills Microcystis aeruginosa via cell-to-cell contact[J]. Sci Total Environ, 2021, 769: 144489. doi: 10.1016/j.scitotenv.2020.144489
    [21]
    GUMBO J R, CLOETE T E. The mechanism of Microcystis aeruginosa death upon exposure to Bacillus mycoides[J]. Phys Chem Earth, 2011, 36(14): 881-886.
    [22]
    KO S R, JEONG Y J, CHO S H, et al. Functional role of a novel algicidal compound produced by Pseudoruegeria sp. M32A2M on the harmful algae Alexandrium catenella[J]. Chemosphere, 2022, 300: 134535. doi: 10.1016/j.chemosphere.2022.134535
    [23]
    JIA Y, LU J Z, WANG M, et al. Algicidal bacteria in phycosphere regulate free-living Symbiodinium fate via triggering oxidative stress and photosynthetic system damage[J]. Ecotox Environ Safe, 2023, 263: 115369. doi: 10.1016/j.ecoenv.2023.115369
    [24]
    SU J F, MA M, WEI L, et al. Algicidal and denitrification characterization of Acinetobacter sp. J25 against Microcystis aeruginosa and microbial community in eutrophic landscape water[J]. Mar Pollut Bull, 2016, 107(1): 233-239. doi: 10.1016/j.marpolbul.2016.03.066
    [25]
    王佳, 洪桂云, 张瑾. 一株铜绿微囊藻溶藻菌的分离鉴定和溶藻特性[J]. 安徽农业大学学报, 2016, 43(5): 768-773.
    [26]
    黄现恩. 几株微囊藻毒素降解菌和溶藻菌的分离鉴定及作用效果[D]. 苏州: 苏州大学, 2015: 35-37.
    [27]
    IRIARTE A, PURDIE D A. Factors controlling the timing of major spring bloom events in an UK south coast estuary[J]. Estuar Coast Shelf Sci, 2004, 61(4): 679-690. doi: 10.1016/j.ecss.2004.08.002
  • Related Articles

    [1]MENG Qingmi, MA Lan, CHEN Jiwei, MO Xianyi, YAO Junjie, YANG Li. Food habits study of Mystus guttatus juvenile based on water body analysis and DNA macro barcode technology for stomach contents[J]. South China Fisheries Science, 2024, 20(5): 149-158. DOI: 10.12131/20240065
    [2]HAN Junjun, HE Jiangtao, CHEN Peng, HU Jiangwei, QI Feng, FENG Yonghui, CAI Lingang, SHI Chunming, ZHANG Renming. Observation on embryonic development, morphology and growth of larvae and juveniles of Aspiorhynchus laticeps[J]. South China Fisheries Science, 2021, 17(1): 59-66. DOI: 10.12131/20200177
    [3]ZHAO Wang, NIU Jin, HU Jing, WU Kaichang, WANG Yu, YANG Rui, YE Le. Effect of dietary carbohydrate level on growth performance and body composition of juvenile Amphiprion ocellaris[J]. South China Fisheries Science, 2017, 13(3): 66-72. DOI: 10.3969/j.issn.2095-0780.2017.03.009
    [4]ZHAO Lihui, JIA Jinhua, ZHANG Yanhong, REN Bingchen, WANG Fei, LIANG Congfei, ZHUANG Qingqing, YAN Biao, ZHAO Jinliang. Growth comparison among three strains of Oreochromis niloticus juvenile in net cage under different salinity-alkalinity waters[J]. South China Fisheries Science, 2013, 9(4): 1-7. DOI: 10.3969/j.issn.2095-0780.2013.04.001
    [5]SU Hui, OU Youjun, LI Jia′er, WANG Yongcui, LIU Rujian, CAO Shouhua. Effects of starvation on antioxidative capacity, Na+/K+-ATPase activity and biochemical composition in juvenile Trachinotus ovatus[J]. South China Fisheries Science, 2012, 8(6): 28-36. DOI: 10.3969/j.issn.2095-0780.2012.06.005
    [6]YUAN Huarong, CHEN Pimao, JIA Xiaoping, ZHOU Yanbo, QIN Chuanxin, FENG Xue, TANG Zhenzhao, YU Jing, SHU Liming. Attractive effect of acoustic taming through rectangular continuant at 500 Hz on juvenile Chrysophrys major in South China Sea[J]. South China Fisheries Science, 2012, 8(1): 36-42. DOI: 10.3969/j.issn.2095-0780.2012.01.006
    [7]YU Na, LI Jia, OU Youjun, FAN Chunyan, ZHANG Jiansheng. Effects of salinity stress and diurnal variation on digestive enzyme activity of juvenile grey mullet (Mugil cephalus)[J]. South China Fisheries Science, 2011, 7(6): 52-57. DOI: 10.3969/j.issn.2095-0780.2011.06.009
    [8]WANG Gang, LI Jia'er, OU Youjun, WANG Jingxiang. Effects of temperature, salinity and pH on oxygen consumption of gill tissue in vitro of juvenile Trachinotus ovatus[J]. South China Fisheries Science, 2011, 7(5): 37-42. DOI: 10.3969/j.issn.2095-0780.2011.05.006
    [9]LI Chun-hou, QI Zhan-hui, HUANG Hong-hui, LIU Yong, KONG Xiao-lan, XIAO Ya-yuan. Review on marine carbon sink and development of carbon sink fisheries in South China Sea[J]. South China Fisheries Science, 2010, 6(6): 81-86. DOI: 10.3969/j.issn.1673-2227.2010.06.015
    [10]LIU An-lin. The new development and suggestions for fisheries cooperations between China and ASEAN[J]. South China Fisheries Science, 2005, 1(4): 69-72.
  • Cited by

    Periodical cited type(5)

    1. 石娟,刘永,李纯厚,王腾,赵金发,宋晓宇,谢宏宇. 珠江口棘头梅童鱼营养生态位研究. 南方水产科学. 2024(03): 56-65 . 本站查看
    2. 郑秋实,刘永,李纯厚,吴鹏,肖雅元,林琳,刘玉,邹剑. 季节变化对珠江口棘头梅童鱼肠道和水体中细菌群落结构的影响. 南方水产科学. 2024(04): 77-87 . 本站查看
    3. 马菁菁,陈海刚,张喆,田斐,唐振朝,熊倩,张林宝. 2018—2023年珠江口鱼类群落结构变化及其与环境因子的关系. 南方水产科学. 2024(06): 62-73 . 本站查看
    4. 熊朋莉,徐姗楠,陈作志,张帅,蒋佩文,范江涛. 珠江河口棘头梅童鱼时空分布以及影响因素的研究进展. 海洋科学. 2022(08): 79-87 .
    5. 汪润芝,原峰,李崇淑,龙焰,许清燕,奚冰柔,冼嘉俊,叶锦韶. 海上风电场建设与运行对渔业资源群落结构及空间分布的影响研究. 海洋开发与管理. 2022(12): 98-106 .

    Other cited types(4)

Catalog

    Recommendations
    渔业声学频差技术在广西银滩南部海域海洋牧场渔业资源评估中的应用
    陈国宝 et al., 南方水产科学, 2025
    2018—2023年珠江口鱼类群落结构变化及其与环境因子的关系
    马菁菁 et al., 南方水产科学, 2024
    基于基尔霍夫近似模型的南海大黄鱼声学目标强度研究
    王文卓 et al., 南方水产科学, 2024
    基于轴向特征校准和时间段网络的鱼群摄食强度分类模型研究
    徐波 et al., 南方水产科学, 2024
    青海湖裸鲤仔稚鱼耳石结构特征与早期生长相关性分析
    汪洋 et al., 大连海洋大学学报, 2024
    耳石微化学技术在鱼类生境履历重建中的研究进展
    高春霞 et al., 水产科学, 2024
    A small-ship object detection method for satellite remote sensing data
    Fan, Xiyu et al., IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024
    A sidelobe-aware small ship detection network for synthetic aperture radar imagery
    Zhou, Yongsheng et al., IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023
    Identification of groundwater potential zones using geospatial technologies in meki catchment, ethiopia
    GEOLOGY, ECOLOGY, AND LANDSCAPES, 2024
    Development of trace metals concentration model for river: application of principal component analysis and artificial neural network
    WATER CONSERVATION AND MANAGEMENT, 2023
    Powered by
    Article views PDF downloads Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return