Citation: | ZHENG Qiushi, LIU Yong, LI Chunhou, WU Peng, XIAO Yayuan, LIN Lin, LIU Yu, ZOU Jian. Seasonal effects on bacterial community between intestine of Collichthys lucidus and water environment from Pearl River Estuary[J]. South China Fisheries Science, 2024, 20(4): 77-87. DOI: 10.12131/20240030 |
Collichthys lucidus is a common dominant and economically important fish species in the Pearl River Estuary. To reveal the ecological characteristics of C. lucidus, we applied high-throughput sequencing technology of 16S rRNA gene to investigate the effects of seasonal changes on the bacterial community structure in the intestines and water body of the Pearl River Estuary. The bacterial community in the fish intestines was predominantly composed of members of Proteobacteria (78.89%), followed by Firmicutes (6.70%) and Bacteroidota (5.45%), while Proteobacteria (40.32%) and Bacteroidota (37.97%) dominated the surrounding water. Besides, we observed the seasonal changes in the dominant bacterial genera in the intestine of C. lucidus. The relative abundance of Psychrobacter was significantly higher in spring and summer, whereas Photobacterium predominated in autumn. However, Pseudomonas, Sva0996 marine group, Vibrio and Methylobacterium were more abundant in winter. The α-diversity index values of the intestinal bacteria of C. lucidus were highest in winter but lowest in autumn. PCoA and ANOSIM analyses reveal no significant differences in the intestinal bacterial composition between spring and summer (p>0.05), whereas significant differences were observed in the other seasons (p<0.05). The seasonal changes in the bacterial composition of surrounding water were similar to those in the fish intestinal bacteria. Mantel test analysis finds out that five bacterial genera (Tenacibaculum, Psychrobacter, Candidatus_Actinomarina, Salinimonas, OM60NOR5_clade) in water environment showed a significantly positive correlation with the intestinal bacteria of C. lucidus (r>0.4, p<0.01). Bacterial co-occurrence network analysis shows that the proportion of shared bacterial communities between the fish intestines and the water environment was lowest in winter but highest in summer. The results indicate that seasonal changes can impact both the intestinal bacterial communities of C. lucidus from the Pearl River Estuary and bacterial communities in water body.
[1] |
CLEMENTS K D, ANGERT E R, MONTGOMERY W L, et al. Intestinal microbiota in fishes: what's known and what's not[J]. Mol Ecol, 2014, 23(8): 1891-1898. doi: 10.1111/mec.12699
|
[2] |
DEARING M D, KOHL K D. Beyond fermentation: other important services provided to endothermic herbivores by their gut microbiota[J]. Integr Comp Biol, 2017, 57(4): 723-731. doi: 10.1093/icb/icx020
|
[3] |
GHANBARI M, KNEIFEL W, DOMIG K J. A new view of the fish gut microbiome: advances from next-generation sequencing[J]. Aquaculture, 2015, 448: 464-475. doi: 10.1016/j.aquaculture.2015.06.033
|
[4] |
SULLAM K E, ESSINGER S D, LOZUPONE C A, et al. Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis[J]. Mol Ecol, 2012, 21(13): 3363-3378. doi: 10.1111/j.1365-294X.2012.05552.x
|
[5] |
DEHLER C E, SECOMBES C J, MARTIN S A M. Environmental and physiological factors shape the gut microbiota of Atlantic salmon parr(Salmo salar L.)[J]. Aquaculture, 2017, 467: 149-157. doi: 10.1016/j.aquaculture.2016.07.017
|
[6] |
COSTELLO E K, STAGAMAN K, DETHLEFSEN L, et al. The application of ecological theory toward an understanding of the human microbiome[J]. Science, 2012, 336(6086): 1255-1262. doi: 10.1126/science.1224203
|
[7] |
KOSKELLA B, HALL L J, METCALF C J E. The microbiome beyond the horizon of ecological and evolutionary theory[J]. Nat Publishing Group, 2017, 1(11): 1606-1615.
|
[8] |
WU P, XIAO Y Y, WANG T, et al. The composition of intestinal microbiota from Collichthys lucidus and its interaction with microbiota from waters along the Pearl River Estuary in China Citation[J]. Front Environ Sci, 2021, 9: 67585.
|
[9] |
SAVARD P, FERNANDES T, DAO A, et al. Seasons influence the native gut microbiome of lake trout Salvelinus namaycush[J]. Appl Microbiol, 2023, 3(1): 276-287. doi: 10.3390/applmicrobiol3010019
|
[10] |
TARNECKI A M, BURGOS F A, RAY C L, et al. Fish intestinal microbiome: diversity and symbiosis unravelled by metagenomics[J]. J Appl Microbiol, 2017, 123(1): 2-17. doi: 10.1111/jam.13415
|
[11] |
ZHU C M, ZHANG J Y, NAWAZ M Z, et al. Seasonal succession and spatial distribution of bacterial community structure in a eutrophic freshwater Lake, Lake Taihu[J]. Sci Total Environ, 2019, 669: 29-40. doi: 10.1016/j.scitotenv.2019.03.087
|
[12] |
WARD C S, YUNG C, DAVIS K M, et al. Annual community patterns are driven by seasonal switching between closely related marine bacteria[J]. ISME J, 2017, 11(6): 1412-1422. doi: 10.1038/ismej.2017.4
|
[13] |
吴鹏, 刘永, 肖雅元, 等. 春季珠江口万山群岛毗邻海域渔业生态环境状况评价[J]. 南方水产科学, 2022, 18(5): 1-8. doi: 10.12131/20210332
|
[14] |
谢雨芳, 吴鹏, 刘永, 等. 珠江河口凤鲚的栖息地适宜性评价[J]. 南方水产科学, 2023, 19(1): 22-29. doi: 10.12131/20220029
|
[15] |
郑秋实, 刘永, 吴鹏, 等. 珠江口优势种鱼类肠道与水体中的微生物组成关系[J]. 农业环境科学学报, 2023, 42(11): 2531-2540. doi: 10.11654/jaes.2023-0552
|
[16] |
李开枝, 尹健强, 黄良民, 等. 珠江口伶仃洋海域底层游泳动物的季节变化[J]. 生态科学, 2012, 31(1): 1-7. doi: 10.3969/j.issn.1008-8873.2012.01.001
|
[17] |
唐广隆, 刘永, 吴鹏, 等. 珠江口万山群岛海域春季渔业资源群落结构特征及其与环境因子的关系[J]. 中国水产科学, 2022, 29(8): 1198-1209.
|
[18] |
陆奎贤. 珠江口底拖网渔获物分析[J]. 水产科技情报, 1993, 20(2): 82-83.
|
[19] |
赖丽华, 张申增, 陆丽仪, 等. 2017—2020年珠江口棘头梅童鱼的种群特征[J]. 应用生态学报, 2022, 33(5): 1413-1419.
|
[20] |
STOFFEL M, ACEVEDO W, MORALESN, et al. Early sexual dimorphism in the developing gut microbiome of northern elephant seals[J]. Mol Ecol, 2020, 29(11): 2109-2122. doi: 10.1111/mec.15385
|
[21] |
HOVDA M B, FONTANILLAS R, MCGURK C, et al. Seaso biota of farmed Atlantic salmon (Salmo salar L.)[J]. Aquac Res, 2012, 43(1): 154-159. doi: 10.1111/j.1365-2109.2011.02805.x
|
[22] |
AKIHIRO T, SAYDUR R, SIGEO N, et al. Lunar cycles and reproductive activity in reef fishes with particular attention to rabbitfishes[J]. Fish Fish, 2004, 5(4): 317-328. doi: 10.1111/j.1467-2679.2004.00164.x
|
[23] |
熊朋莉, 陈作志, 侯刚, 等. 珠江河口棘头梅童鱼生物学特征的年代际变化[J]. 南方水产科学, 2021, 17(6): 31-38. doi: 10.12131/20210072
|
[24] |
LIU Y Q, LI X H, LI J, et al. The gut microbiome composition and degradation enzymes activity of black Amur bream (Megalobrama terminalis) in response to breeding migratory behavior[J]. Ecol Evol, 2021, 11(10): 5150-5163. doi: 10.1002/ece3.7407
|
[25] |
熊朋莉, 徐姗楠, 陈作志, 等. 珠江河口棘头梅童鱼时空分布以及影响因素的研究进展[J]. 海洋科学, 2022, 46(8): 79-87.
|
[26] |
吴振兴, 陈贤亮. 棘头梅童鱼年龄与阶段生长的初步研究[J]. 浙江水产学院学报, 1991, 10(2): 140-143.
|
[27] |
LI X H, ZHOU L, YU Y H, et al. Composition of gut microbiota in the gibel carp (Carassius auratus gibelio) varies with host development[J]. Microbial Ecol, 2017, 74(1): 239-249. doi: 10.1007/s00248-016-0924-4
|
[28] |
YAN Q Y, LI J J, YU Y H, et al. Environmental filtering decreases with fish development for the assembly of gut microbiota[J]. Environ Microbiol, 2016, 18(12): 4739-4754. doi: 10.1111/1462-2920.13365
|
[29] |
XIAO F S, ZHU W, YU Y H, et al. Host development overwhelms environmental dispersal in governing the ecological succession of zebrafish gut microbiota[J]. Biofilms Microbi, 2021, 7: 5. doi: 10.1038/s41522-020-00176-2
|
[30] |
MORBEY Y E, COUTURE P, BUSBY P, et al. Physiological correlates of seasonal growth patterns in lake trout Salvelinus namaycush[J]. J Fish Biol, 2010, 77(10): 2298-2314. doi: 10.1111/j.1095-8649.2010.02804.x
|
[31] |
AXELLE G, OLGA O, ELODIE R, et al. Seasonality and growth in tropical freshwater ectotherm vertebrates: Results from 1-year experimentation in the African gray bichir, giraffe catfish, and the West African mud turtle[J]. Ecol Evol, 2023, 13(3): e9936. doi: 10.1002/ece3.9936
|
[32] |
王淼, 徐开达, 梁君. 杭州湾北部棘头梅童鱼繁殖群体生物学特征初步分析[J]. 上海海洋大学学报, 2018, 27(5): 781-788.
|
[33] |
王建锋, 赵峰, 宋超, 等. 长江口棘头梅童鱼食物组成和摄食习性的季节变化[J]. 应用生态学报, 2016, 27(1): 291-298.
|
[34] |
薛莹金, 张波, 梁振林. 黄海中部小黄鱼的食物组成和摄食习性的季节变化[J]. 中国水产科学, 2004, 11(3): 237-243. doi: 10.3321/j.issn:1005-8737.2004.03.011
|
[35] |
HUANG Q, SHAM R C, DENG Y, et al. Diversity of gut microbiomes in marine fishes is shaped by host-related factors[J]. Mol Ecol, 2020, 29(24): 5019-5034. doi: 10.1111/mec.15699
|
[36] |
PARRIS D J, MORGAN M M, STEWART F J. Feeding rapidly alters microbiome composition and gene transcription in the clownfish gut[J]. Appl Environ Microbiol, 2018, 85(3): e2479.
|
[37] |
HARBI A H, UDDIN M N. Seasonal variation in the intestinal bacterial flora of hybrid tilapia (Oreochromis niloticus×Oreochromis aureus) cultured in earthen ponds in Saudi Arabia[J]. Aquaculture, 2004, 229(1/2/3/4): 37-44.
|
[38] |
杨红玲, 马如龙, 孙云章. 石斑鱼肠道原籍嗜冷杆菌 (Psychrobacter sp.) SE6作为益生菌的体内外评价[J]. 海洋学报(中文版), 2012, 34(2): 129-135.
|
[39] |
陈仕煊. 吕泗渔场主要渔获物脂肪酸组成及小黄鱼和棘头梅童鱼肠道微生物研究[D]. 上海: 上海海洋大学, 2021: 39-46.
|
[40] |
陶诗, 何芳芳, 刘雪珠, 等. 海水养殖鱼类病原微生物研究进展[J]. 水产科学, 2013, 32(3): 175-182. doi: 10.3969/j.issn.1003-1111.2013.03.011
|
[41] |
冯雪, 吴志新, 祝东梅, 等. 草鱼和银鲫肠道产消化酶细菌的研究[J]. 淡水渔业, 2008, 38(3): 51-57. doi: 10.3969/j.issn.1000-6907.2008.03.010
|
[42] |
王瑞旋, 冯娟. 军曹鱼肠道细菌及其产酶能力的研究[J]. 海洋环境科学, 2008, 27(4): 309-312. doi: 10.3969/j.issn.1007-6336.2008.04.003
|
[43] |
ORSI W D, SMITH J M, LIU S, et al. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean[J]. ISME J, 2016, 10(9): 2158-2173. doi: 10.1038/ismej.2016.20
|
[44] |
ZHANG C F, HU L Y, HAO J H, et al. Effects of plant-derived protein and rapeseed oil on growth performance and gut microbiomes in rainbow trout[J]. BMC Microbiol, 2023, 23: 255. doi: 10.1186/s12866-023-02998-4
|
[45] |
ZARKASI K Z, ABELL G C J, TAYLOR R S, et al. Pyrosequencing-based characterization of gastrointestinal bacteria of Atlantic salmon (Salmo salar L.) within a commercial mariculture system[J]. J Appl Microbiol, 2014, 117(1): 18-27. doi: 10.1111/jam.12514
|
[46] |
LADAU J, SHARPTON T J, FINUCANE M, et al. Global marine bacterial diversity peaks at high latitudes in winter[J]. ISME J, 2013, 7(9): 1669-1677. doi: 10.1038/ismej.2013.37
|
[47] |
LI T T, LONG M, GATESOUPE F, et al. Comparative analysis of the intestinal bacterial communities in different species of carp by pyrosequencing[J]. Microbial Ecol, 2015, 69(1): 25-36. doi: 10.1007/s00248-014-0480-8
|
[48] |
MENG L J, ZHANG Y, LI X X, et al. Comparative analysis of bacterial communities of water and intestines of silver carp (Hypophthalmichthys molitrix) and bighead carp (H. nobilis) reared in aquaculture pond systems[J]. Aquaculture, 2021, 534: 736334. doi: 10.1016/j.aquaculture.2020.736334
|
[49] |
葛家良. 刺参浅海网箱养殖系统菌群结构特征及其与环境因子关系研究[D]. 上海: 上海海洋大学, 2023: 39-46.
|
[50] |
刘翠萍. 刺参 (Apostichopus japonicus) 感染两种病原菌前后体内凝集素的分离纯化与性质研究[D]. 青岛: 中国海洋大学, 2008: 7-17.
|
[51] |
ROSADO D, XAVIER R, CABLE J, et al. Longitudinal sampling of external mucosae in farmed European seabass reveals the impact of water temperature on bacterial dynamics[J]. ISME Commun, 2021, 1: 28. doi: 10.1038/s43705-021-00019-x
|
[52] |
LI J, JIANG H Y, LI L, et al. The effect of disease and season to hepatopancreas and intestinal mycobiota of Litopenaeus vanna mei[J]. Front Microbiol, 2019, 10: 889. doi: 10.3389/fmicb.2019.00889
|
[53] |
KORTET R, TASKINEN J, SINISALO T, et al. Breeding-related seasonal changes in immunocompetence, health state and condition of the cyprinid fish, Rutilus rutilus, L[J]. Biol J Linnean Soc, 2003, 78(1): 117-127. doi: 10.1046/j.1095-8312.2003.00136.x
|
[54] |
KRAMS I A, RUMVOLT K, SAKS L, et al. Reproduction compromises adaptive immunity in a cyprinid fish[J]. Ecol Res, 2017, 32(4): 559-566. doi: 10.1007/s11284-017-1467-y
|
[55] |
FU J L, YANG D, JIN M, et al. Aquatic animals promote antibiotic resistance gene dissemination in water via conjugation: role of different regions within the zebra fish intestinal tract, and impact on fish intestinal microbiota[J]. Mol Ecol, 2017, 26(19): 5318-5333. doi: 10.1111/mec.14255
|
[56] |
GEORGIOS B, PANAGIOTIS A, HELEN M. Effect of temperature and seasonality principal epizootiological risk factor on vibriosis and photobacteriosis outbreaks for european sea bass in greece (1998−2013)[J]. J Aquac Res Dev, 2015, 6(5): 1-3.
|
[57] |
MOHAMAD N, AMAL M, YASIN I S, et al. Vibriosis in cultured marine fishes: a review[J]. Aquaculture, 2019, 512: 734289. doi: 10.1016/j.aquaculture.2019.734289
|
[1] | SHI Juan, LIU Yong, LI Chunhou, WANG Teng, ZHAO Jinfa, SONG Xiaoyu, XIE Hongyu. Trophic niche analysis of Collichthys lucidus in Pearl River Estuary[J]. South China Fisheries Science, 2024, 20(3): 56-65. DOI: 10.12131/20240025 |
[2] | XIA Feiyu, ZHANG Xiumei, XU Pian, XU Ying, WANG Yihang. Comparative analysis of shell frame characteristics and mitochondrial 16S rRNA gene between wild and cultured mussels (Mytilus coruscus)[J]. South China Fisheries Science, 2023, 19(5): 168-176. DOI: 10.12131/20230096 |
[3] | LIU Yan, WU Zhongxin, YANG Changping, SHAN Binbin, LIU Shengnan, SUN Dianrong. Ecological carrying capacity of six species of stock enhancement in Pearl River estuary based on Ecopath model[J]. South China Fisheries Science, 2019, 15(4): 19-28. DOI: 10.12131/20180265 |
[4] | SHUAI Fangmin, LI Zhiquan, LIU Guowen, LI Xinhui, LI Yuefei, YANG Jiping, LI Jie. Resource status of Japanese eel (Anguilla japonica) in the Pearl River Estuary[J]. South China Fisheries Science, 2015, 11(2): 85-89. DOI: 10.3969/j.issn.2095-0780.2015.02.012 |
[5] | MA Guo-qiang, GAO Tian-xiang, SUN Dian-rong. Discussion of relationship between Collichthys lucidus and C. niveatus based on 16S rRNA and Cyt b gene sequences[J]. South China Fisheries Science, 2010, 6(2): 13-20. DOI: 10.3969/j.issn.1673-2227.2010.02.003 |
[6] | HUANG Guiju, YU Dahui, GUO Yihui, QU Nini. Phylogenetic relationship of pearl oysters in genus Pinctada based on partial mitochondrial 16S rRNA sequence[J]. South China Fisheries Science, 2009, 5(6): 47-53. DOI: 10.3969/j.issn.1673-2227.2009.06.009 |
[7] | YANG Lin, ZHANG Xufeng, TAN Yongguang, ZHANG Peng. Analysis of the catch composition of small shrimp-beam-trawl net in shallow waters of Pearl River Estuary, China[J]. South China Fisheries Science, 2008, 4(6): 70-77. |
[8] | GAO Yuan, LAI Zini, WANG Chao, PANG Shixun, WEI Taili, XIE Wenping, YANG Wanling. Community characteristics of zooplankton in Pearl River Estuary in summer of 2006[J]. South China Fisheries Science, 2008, 4(1): 10-15. |
[9] | WANG Di, LIN Zhaojin. Spatial and temporal variations of fish community structure in the Pearl River Estuary waters[J]. South China Fisheries Science, 2006, 2(4): 37-45. |
[10] | YANG Lin, ZHANG Xufeng, ZHANG Peng, TAN Yongguang. Composition of by-catch of shrimping beam trawl in the Pearl River Estuary, China[J]. South China Fisheries Science, 2005, 1(1): 27-34. |