SHI Juan, LIU Yong, LI Chunhou, WANG Teng, ZHAO Jinfa, SONG Xiaoyu, XIE Hongyu. Trophic niche analysis of Collichthys lucidus in Pearl River Estuary[J]. South China Fisheries Science, 2024, 20(3): 56-65. DOI: 10.12131/20240025
Citation: SHI Juan, LIU Yong, LI Chunhou, WANG Teng, ZHAO Jinfa, SONG Xiaoyu, XIE Hongyu. Trophic niche analysis of Collichthys lucidus in Pearl River Estuary[J]. South China Fisheries Science, 2024, 20(3): 56-65. DOI: 10.12131/20240025

Trophic niche analysis of Collichthys lucidus in Pearl River Estuary

More Information
  • Received Date: January 24, 2024
  • Revised Date: March 05, 2024
  • Accepted Date: April 07, 2024
  • Available Online: April 12, 2024
  • Collichthys lucidus is an important small economic fish, and in order to understand its nutritional structure and dietary characteristics, we collected samples from the waters of the Pearl River Estuary in 2021 and 2022, and studied them from the perspectives of trophic niche, trophic structure index and feeding habit by on stable isotope technology. The results indicate that the δ13C and δ15N values of C. lucidus were (−18.74±1.41)‰ and (12.35±0.57)‰, respectively, with a trophic level of (3.25±0.17)‰. The δ13C value gradually increased when the body length was less than 100.00 mm, then decreased with the increase of body length. The δ15N value increased with the increase of body length when the body length was less than 110.00 mm, and the inflection point occurred at body length of 110.00–120.00 mm. The δ15N value was the lowest, and then increased with the increase of body length. When the body length was less than 100.00 mm and more than 120.00 mm, the trophic diversity was high, and the trophic niche width was large. When the body length was 100.00–120.00 mm, the redundancy and evenness were high, and the trophic niche distribution was uniform in the community, and the individuals with similar trophic characteristics accounted for the majority. Bayesian mixing model tracing reveals that the highest food contribution proportion for C. lucidus was from zooplankton. The research provides a theoretical basis for the resource conservation and management of C. lucidus.

  • [1]
    ZHANG S, LI M, ZHU J F, et al. An integrated approach to determine the stock structure of spinyhead croaker Collichthys lucidus (Sciaenidae) in Chinese coastal waters[J]. Front Mar Sci, 2021, 8: 693954. doi: 10.3389/fmars.2021.693954
    [2]
    熊朋莉, 陈作志, 侯刚, 等. 珠江河口棘头梅童鱼生物学特征的年代际变化[J]. 南方水产科学, 2021, 17(6): 31-38.
    [3]
    区又君, 廖锐, 李加儿, 等. 利用耳石日轮研究珠江口棘头梅童鱼的产卵期及生长[J]. 台湾海峡, 2012, 31(1): 85-88.
    [4]
    SONG N, YIN L N, SUN D R, et al. Fine-scale population structure of Collichtys lucidus populations inferred from microsatellite markers[J]. J Appl Ichthyol, 2019, 35(3): 709-718. doi: 10.1111/jai.13902
    [5]
    黄良敏, 谢仰杰, 李军, 等. 闽江口及附近海域棘头梅童鱼的生物学特征[J]. 集美大学学报(自然科学版), 2010, 15(4): 8-13.
    [6]
    农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2022中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2022: 59-64.
    [7]
    农业部渔业渔政管理局. 2014中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2014: 59-63.
    [8]
    WANG Y Y, ZHANG H A, CHEN Y W, et al. Trophic niche width and overlap of three benthic living fish species in Poyang Lake: a stable isotope approach[J]. Wetlands, 2019, 39(1): 17-23. doi: 10.1007/s13157-018-1028-3
    [9]
    WANG J, JIANG R J, XIAO Y, et al. Trophic niche partitioning of five Sciaenidae species sampled in Zhoushan Archipelago waters via stable isotope analysis[J]. Front Mar Sci, 2022, 9: 880123. doi: 10.3389/fmars.2022.880123
    [10]
    WANG S Q, WANG X F, XU L X, et al. Feeding habits and trophic niche of rainbow runner Elagatis bipinnulata in the western and central Pacific Ocean[J]. Environ Biol Fishes, 2022, 105(1): 139-149. doi: 10.1007/s10641-021-01200-w
    [11]
    KVAAVIK C, OSKARSSON G J, PÉTURSDÓTTIR H, et al. New insight into trophic niche partitioning and diet of mackerel (Scomber scombrus) and herring (Clupea harengus) in Icelandic waters[J]. ICES J Mar Sci, 2021, 78(4): 1485-1499. doi: 10.1093/icesjms/fsaa100
    [12]
    CHENG J, MA G Q, MIAO Z Q, et al. Complete mitochondrial genome sequence of the spinyhead croaker Collichthys lucidus (Perciformes, Sciaenidae) with phylogenetic considerations[J]. Mol Biol Rep, 2012, 39(4): 4249-4259. doi: 10.1007/s11033-011-1211-6
    [13]
    MA Q Y, TIAN S Q, HAN D Y, et al. Growth and maturity heterogeneity of three croaker species in the East China Sea[J]. Reg Stud Mar Sci, 2021, 41: 101483.
    [14]
    LIU H B, JIANG T, HUANG H H, et al. Estuarine dependency in Collichthys lucidus of the Yangtze River Estuary as revealed by the environmental signature of otolith strontium and calcium[J]. Environ Biol Fish, 2015, 98(1): 165-172. doi: 10.1007/s10641-014-0246-7
    [15]
    高世科, 黄金玲, 于雯雯, 等. 吕泗渔场两种石首鱼科鱼类营养生态学特征: 来自稳定同位素的证据[J]. 应用海洋学学报, 2021, 40(3): 413-420.
    [16]
    贺舟挺, 薛利建, 金海卫. 东海北部近海棘头梅童鱼食性及营养级的探讨[J]. 海洋渔业, 2011, 33(3): 265-273.
    [17]
    王建锋, 赵峰, 宋超, 等. 长江口棘头梅童鱼食物组成和摄食习性的季节变化[J]. 应用生态学报, 2016, 27(1): 291-298.
    [18]
    杨纪明. 渤海鱼类的食性和营养级研究[J]. 现代渔业信息, 2001(10): 10-19.
    [19]
    宋业晖, 薛莹, 徐宾铎, 等. 海州湾3种石首鱼的食物组成和生态位重叠[J]. 水产学报, 2020, 44(12): 2017-2027.
    [20]
    王军, 苏永全, 柳建英, 等. 罗源湾五种石首鱼类的食性研究[J]. 厦门水产学院学报, 1994(2): 34-39.
    [21]
    王静. 舟山群岛海域四种经济鱼类的摄食生态研究[D]. 舟山: 浙江海洋大学, 2022: 25-39.
    [22]
    POST D M. Using stable isotopes to estimate trophic position: models, methods, and assumptions[J]. Ecology, 2002, 83(3): 703-718. doi: 10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2
    [23]
    LAYMAN C A, ARRINGTON D A, MONTAA C G, et al. Can stable isotope ratios provide for community-wide measures of trophic structure?[J]. Ecology, 2007, 88(1): 42-48. doi: 10.1890/0012-9658(2007)88[42:CSIRPF]2.0.CO;2
    [24]
    JACKSON A L, INGER R, PARNELL A C, et al. Comparing isotopic niche widths among and within communities: SIBER-Stable Isotope Bayesian Ellipses in R[J]. J Anim Ecol, 2011, 80(3): 595-602. doi: 10.1111/j.1365-2656.2011.01806.x
    [25]
    石焱. 基于碳氮稳定同位素的闽江口常见鱼类营养生态位季节性变化[D]. 厦门: 集美大学, 2018: 26-33.
    [26]
    叶学瑶, 任泷, 匡箴, 等. 基于稳定同位素技术的阳澄湖鱼类群落营养结构研究[J]. 中国水产科学, 2021, 28(6): 703-714.
    [27]
    赖丽华, 张申增, 陆丽仪, 等. 2017—2020年珠江口棘头梅童鱼的种群特征[J]. 应用生态学报, 2022, 33(5): 1413-1419.
    [28]
    PAULY D, PALOMARES M L. Fishing down marine food web: it is far more pervasive than we thought[J]. Bull Mar Sci, 2005, 76(2): 197-211.
    [29]
    JENNINGS S, GREENSTREET S P R, HILL L, et al. Long-term trends in the trophic structure of the North Sea fish community: evidence from stable-isotope analysis, size-spectra and community metrics[J]. Mar Biol, 2002, 141(6): 1085-1097. doi: 10.1007/s00227-002-0905-7
    [30]
    郑德锋, 赵金良, 周文玉, 等. 我国沿海棘头梅童鱼(Collichthys lucidus)群体遗传结构的AFLP分析[J]. 海洋与湖沼, 2011, 42(3): 443-447.
    [31]
    QUILLFELDT P, EKSCHMITT K, BRICKLE P, et al. Variability of higher trophic level stable isotope data in space and time: a case study in a marine ecosystem[J]. Rapid Commun Mass Spectrom, 2015, 29(7): 667-674. doi: 10.1002/rcm.7145
    [32]
    廖建基, 郑新庆, 杜建国, 等. 基于氮稳定同位素的九龙江口鱼类营养级研究[J]. 海洋学报, 2015, 37(2): 93-103.
    [33]
    高春霞, 戴小杰, 田思泉, 等. 基于稳定同位素技术的浙江南部近海主要渔业生物营养级[J]. 中国水产科学, 2020, 27(4): 438-453.
    [34]
    何雄波, 李波, 王锦溪, 等. 不同时期北部湾日本带鱼营养生态位差异[J]. 应用生态学报, 2021, 32(2): 683-690.
    [35]
    银利强, 孔业富, 吴忠鑫, 等. 南海中西部海域春季三种金枪鱼类的营养生态位比较[J]. 生态学杂志, 2020, 39(12): 4121-4130.
    [36]
    闫光松, 张涛, 赵峰, 等. 基于稳定同位素技术对长江口主要渔业生物营养级的研究[J]. 生态学杂志, 2016, 35(11): 3131-3136.
    [37]
    王淼, 徐开达, 梁君. 杭州湾北部棘头梅童鱼繁殖群体生物学特征初步分析[J]. 上海海洋大学学报, 2018, 27(5): 781-788.
    [38]
    GUL G, DEMIREL N. Ontogenetic shift in diet and trophic role of Raja clavata inferred by stable isotopes and stomach content analysis in the Sea of Marmara[J]. J Fish Biol, 2022, 101(3): 560-572. doi: 10.1111/jfb.15123
    [39]
    操亮亮, 刘必林, 李建华. 基于稳定同位素技术的东南太平洋公海茎柔鱼摄食生态分析[J]. 大连海洋大学学报, 2022, 37(1): 120-128.
    [40]
    ZHOU F, WU H P, JIA S S, et al. Ontogenetic variation of trophic habitat for sympatric benthic octopods in East China Sea derived from isotopic analysis on beaks[J]. Fish Res, 2021, 238: 105902. doi: 10.1016/j.fishres.2021.105902
    [41]
    郭家彤, 王腾, 陈得仿, 等. 大亚湾黑棘鲷的摄食习性[J]. 中国水产科学, 2021, 28(8): 1041-1050.
    [42]
    BARNES C L, BEAUDREAU A H, YAMADA R N. The role of size in trophic niche separation between two groundfish predators in Alaskan waters[J]. Mar Coast Fish, 2021, 13(1): 69-84. doi: 10.1002/mcf2.10141
    [43]
    PARK H J, KWAK J H, LEE Y J, et al. Trophic structures of two contrasting estuarine ecosystems with and without a dike on the temperate coast of Korea as determined by stable isotopes[J]. Estuar Coast, 2020, 43(3): 560-577. doi: 10.1007/s12237-019-00522-4
    [44]
    杨蕊, 韩东燕, 高春霞, 等. 浙江南部近海前肛鳗营养生态位变化研究: 基于稳定同位素技术[J]. 生态学报, 2022, 42(23): 9796-9807.
    [45]
    黄佳兴, 龚玉艳, 徐姗楠, 等. 南海中西部海域鸢乌贼中型群和微型群的营养生态位[J]. 应用生态学报, 2019, 30(8): 2822-2828.
    [46]
    殷宝法, 淮虎银, 张镱锂, 等. 可可西里地区藏羚羊、藏原羚和藏野驴的营养生态位[J]. 应用生态学报, 2007, 18(4): 766-770. doi: 10.3321/j.issn:1001-9332.2007.04.010
    [47]
    徐超, 王思凯, 赵峰, 等. 长江口水生动物食物网营养结构及其变化[J]. 水生生物学报, 2019, 43(1): 155-164.
    [48]
    曾艳艺, 赖子尼, 杨婉玲, 等. 珠江河口渔业生物稳定同位素营养级分析[J]. 生态学杂志, 2018, 37(1): 194-202.
    [49]
    ZHANG Y L, ZHANG C L, XU B D, et al. Impacts of trophic interactions on the prediction of spatio-temporal distribution of mid-trophic level fishes[J]. Ecol Indic, 2022, 138(2/3): 108826.
    [50]
    AYELEN T, FRANCO C, ANÍBAL G N, et al. Trophic niche partitioning of five skate species of genus Bathyraja in northern and central Patagonia, Argentina[J]. J Fish Biol, 2020, 97(3): 656-667. doi: 10.1111/jfb.14416
    [51]
    李振华, 徐开达, 蒋日进, 等. 东海中北部小眼绿鳍鱼的食物组成及摄食习性的体长变化[J]. 中国水产科学, 2011, 18(1): 185-193.
  • Related Articles

    [1]MA Jingjing, CHEN Haigang, ZHANG Zhe, TIAN Fei, TANG Zhenzhao, XIONG Qian, ZHANG Linbao. Interannual variation of fish communities and their environmental factors in Pearl River Estuary from 2018 to 2023[J]. South China Fisheries Science, 2024, 20(6): 62-73. DOI: 10.12131/20240139
    [2]SUN Ye, LIU Yong, LI Chunhou, WU Peng, LI Yafang, SHU Liming, LIN Lin, XIAO Yayuan, TANG Guanglong. Community characteristics and influencing factors of macrobenthos in Pearl River Estuary[J]. South China Fisheries Science, 2023, 19(5): 39-47. DOI: 10.12131/20230048
    [3]LIU Yan, WU Zhongxin, YANG Changping, SHAN Binbin, LIU Shengnan, SUN Dianrong. Ecological carrying capacity of six species of stock enhancement in Pearl River estuary based on Ecopath model[J]. South China Fisheries Science, 2019, 15(4): 19-28. DOI: 10.12131/20180265
    [4]YAN Lei, TAN Yongguang, YANG Lin, YANG Bingzhong, ZHANG Peng, CHEN Sen, LI Jie. Catch composition and diversity of gillnet fishery in the Pearl River Estuary coastal waters of the South China Sea in autumn[J]. South China Fisheries Science, 2016, 12(1): 111-119. DOI: 10.3969/j.issn.2095-0780.2016.01.015
    [5]SHUAI Fangmin, LI Zhiquan, LIU Guowen, LI Xinhui, LI Yuefei, YANG Jiping, LI Jie. Resource status of Japanese eel (Anguilla japonica) in the Pearl River Estuary[J]. South China Fisheries Science, 2015, 11(2): 85-89. DOI: 10.3969/j.issn.2095-0780.2015.02.012
    [6]YANG Lin, ZHANG Xufeng, TAN Yongguang, ZHANG Peng. Analysis of the catch composition of small shrimp-beam-trawl net in shallow waters of Pearl River Estuary, China[J]. South China Fisheries Science, 2008, 4(6): 70-77.
    [7]GAO Yuan, LAI Zini, WANG Chao, PANG Shixun, WEI Taili, XIE Wenping, YANG Wanling. Community characteristics of zooplankton in Pearl River Estuary in summer of 2006[J]. South China Fisheries Science, 2008, 4(1): 10-15.
    [8]WANG Di, LIN Zhaojin. Spatial and temporal variations of fish community structure in the Pearl River Estuary waters[J]. South China Fisheries Science, 2006, 2(4): 37-45.
    [9]YANG Mei-lan, LIN Qin, LU Xiao-yu, CAI Wen-gui. Distribution characteristics of suspended substance in the Lingdingyang water of the Pearl River Estuary[J]. South China Fisheries Science, 2005, 1(2): 51-55.
    [10]YANG Lin, ZHANG Xufeng, ZHANG Peng, TAN Yongguang. Composition of by-catch of shrimping beam trawl in the Pearl River Estuary, China[J]. South China Fisheries Science, 2005, 1(1): 27-34.

Catalog

    Article views (115) PDF downloads (39) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return