中西太平洋金枪鱼围网自由鱼群渔场重心变动及其与南方涛动指数的关系

李鹏, 许柳雄, 周成, 王学昉, 唐浩, 刘伟

李鹏, 许柳雄, 周成, 王学昉, 唐浩, 刘伟. 中西太平洋金枪鱼围网自由鱼群渔场重心变动及其与南方涛动指数的关系[J]. 南方水产科学, 2020, 16(2): 70-76. DOI: 10.12131/20190158
引用本文: 李鹏, 许柳雄, 周成, 王学昉, 唐浩, 刘伟. 中西太平洋金枪鱼围网自由鱼群渔场重心变动及其与南方涛动指数的关系[J]. 南方水产科学, 2020, 16(2): 70-76. DOI: 10.12131/20190158
LI Peng, XU Liuxiong, ZHOU Cheng, WANG Xuefang, TANG Hao, LIU Wei. Variation of fishing ground gravity of tuna free-swimming school caught by purse seiner in Western and Central Pacific Ocean and its relationship with Southern Oscillation Index[J]. South China Fisheries Science, 2020, 16(2): 70-76. DOI: 10.12131/20190158
Citation: LI Peng, XU Liuxiong, ZHOU Cheng, WANG Xuefang, TANG Hao, LIU Wei. Variation of fishing ground gravity of tuna free-swimming school caught by purse seiner in Western and Central Pacific Ocean and its relationship with Southern Oscillation Index[J]. South China Fisheries Science, 2020, 16(2): 70-76. DOI: 10.12131/20190158

中西太平洋金枪鱼围网自由鱼群渔场重心变动及其与南方涛动指数的关系

基金项目: 国家重点研发计划项目 (2019YFD0901502);国家自然科学基金项目 (41506151;41806110;31902426);中国博士后科学基金项目 (2018M630471)
详细信息
    作者简介:

    李 鹏(1993—),男,硕士研究生,研究方向为金枪鱼栖息地。E-mail: lipengzyy@163.com

    通讯作者:

    周 成(1987—),男,博士,讲师,从事金枪鱼渔业研究。E-mail: zhoucheng286@126.com

  • 中图分类号: S 931.41

Variation of fishing ground gravity of tuna free-swimming school caught by purse seiner in Western and Central Pacific Ocean and its relationship with Southern Oscillation Index

  • 摘要:

    文章根据2013—2017年中国中西太平洋金枪鱼围网船队捕捞日志,利用捕捞自由鱼群作业位置、作业时间和渔获量等数据信息,分析了自由鱼群渔场重心月间变化、年际变化与南方涛动指数 (South Oscillation Index,SOI) 的关系。结果显示,渔获量较高的海域海表温度 (Sea surface temperature,SST) 高于29 ℃;自由鱼群的渔场重心主要分布介于160°E—175°W;2013—2015年渔场重心有逐年向东偏移的趋势,但无明显的月间变化规律;SOI为正值时,中西太平洋“暖池”较正常年份向西偏移,自由鱼群渔场重心亦明显向西偏移;反之,自由鱼群渔场重心较正常年份向东偏移。相关性分析显示SOI和月间渔场重心的经度之间呈负相关(相关系数为−0.27,P<0.05),表明金枪鱼围网渔场变动和异常气候的发生存在密切联系。研究结果对于掌握中西太平洋金枪鱼围网渔场变动规律具有一定参考价值。

    Abstract:

    Based on the data of fishing positon, fishing date and catch of free-swimming school from the logbooks of Chinese tuna purse seine fishing fleet operating on the Western and Central Pacific Ocean during 2013 and 2017, we analyzed the relationship between monthly and yearly variation of fishing grounds gravity of free-swimming school and the South Oscillation Index (SOI) obtained from the US Climate Analysis Center. The results show that more catch was found in the fishing areas with sea surface temperature (SST) above 29.5 ℃. The fishing ground gravity was mainly distributed between 160°E and 175°W. The gravity center had an eastward tendency from 2013 to 2015 without evident monthly variation. The "warm pool" and the gravity center of the Western and Central Pacific Ocean moved towards the west when SOI was positive, while the gravity center moved eastwards when SOI was negative. Correlation analysis shows a significant negative correlation between SOI and fishing ground gravity (the correlation coefficient was −0.27, P<0.05), indicating that there was a close relationship between the change of fishing ground gravity center and climate change. The study helps understand the variation law of fishing ground of tuna purse seine fishery in the Western and Central Pacific Ocean.

  • 黄鳍金枪鱼 (Thunnus albacares) 隶属于鲭科、金枪鱼属,是一种喜集群的大洋性洄游鱼类,因背鳍、臀鳍及小鳍同为橘黄色,又名黄鳍鲔[1]。广泛分布于太平洋、大西洋、印度洋的热带和亚热带海域[2]。众所周知,金枪鱼具有生长速度快、粗蛋白和不饱和脂肪酸含量高的特点,深受消费者喜爱[3]。金枪鱼的丰度还可以支持珊瑚礁、沿海渔业和海水养殖等产业的可持续开发和利用[4]。其种群是组成远洋生态系统的关键部分,也是世界上最大和最有价值的渔业之一[5]

    对水生动物来说,pH是一个重要的环境因子,其极细微的变化也会产生深远影响[6];从而引起生态系统内一系列的化学变化,影响大多数水产生物的生长、繁殖、代谢与生存[7]。当水体pH下降到一定程度,超过机体的最大调控范围,就会出现细胞内酸中毒和环境高碳酸血症[8]。二氧化碳 (CO2)排放过量引起的海洋酸化改变了海洋环境,扰乱了海洋动物机体的新陈代谢、酸碱平衡和生物体内多种酶的活性[9]。有研究表明,水体酸化会使金头鲷 (Sparus aurata) 的抗氧化能力受到抑制[10];过酸的养殖水体会显著影响脊尾白虾 (Exopalaemon carinicauda) 的非特异性免疫力[11];酸化导致了青鳉 (Oryzias melastigm) 幼鱼脂质代谢紊乱[12];严重的酸化条件与舌齿鲈 (Dicentrarchus labrax) 显著升高的最大代谢率有关[13];海洋酸化会导致金枪鱼的生物量减少[14]

    大气中过多的CO2被海水吸收后形成碳酸,增加了海水酸度,然而少有酸化胁迫对黄鳍金枪鱼幼鱼生理特性影响的报道。随着捕捞量的增加,金枪鱼的资源量急剧下降,无法满足市场需求。本研究通过测定相关酶活性,评估海水酸化胁迫对黄鳍金枪鱼幼鱼抗氧化防御系统和免疫功能的影响,为海洋生态环境和金枪鱼野生种群的保护提供参考。

    黄鳍金枪鱼幼鱼平均体长为 (18.21±1.09) cm、平均体质量为 (354.98±149.77) g,由中国水产科学研究院南海水产研究所热带水产研究开发中心提供。实验用水为砂滤后的自然海水,水温 (22.5±1.0) ℃,溶解氧质量浓度 (7.5±0.5) mg·L−1,盐度 (33.00±0.80)‰,氨氮质量浓度 <0.05 mg·L−1,亚硝酸盐质量浓度 <0.05 mg·L−1

    正式实验开始前,先将金枪鱼幼鱼在驯养池中暂养7 d,期间投喂冰鲜杂鱼。随机挑选72尾行为活泼、体表健康的幼鱼,在直径和水深均为1.5 m的圆形钢化桶中进行48 h的酸化胁迫实验,暂养期间与正式实验期间水质保持一致。实验共设置4组,以自然海水pH 8.1为对照组,pH 7.6、7.1、6.6为实验组,每组设3个重复,每个重复6尾鱼。实验期间金枪鱼幼鱼处于停食状态。并通过1.0 mmol·L−1的氢氧化钠 (NaOH) 溶液或1.0 mmol·L−1的盐酸 (HCl) 溶液调节海水pH。使用pH分析仪 (PH848) 测定海水酸度,每2 h矫正1次,使pH变化幅度保持在 ±0.1。实验至第48小时,统计死亡的幼鱼数量 (以鱼体侧躺、沉入水底不再游动为准),计算成活率。

    实验结束后每组随机选取6尾黄鳍金枪鱼幼鱼,经丁香酚麻醉后进行解剖,解剖全程在冰盒上进行。分别采集肝、鳃、红肌、皮肤组织于2 mL无菌冻存管中,置于液氮中冷冻,之后保存在−80 ℃冰箱中用于后续免疫和代谢酶的测定。准确称取组织0.1~0.2 g,加入9倍体积的0.9% (w) 盐水,冰水浴条件下机械匀浆后,3 000 r·min−1离心10 min,取上清液测定相关酶活性和总蛋白含量。选取丙二醛 (MDA) 为抗氧化物质的标志物;超氧化物歧化酶 (SOD)、过氧化氢酶 (CAT)、谷胱甘肽过氧化物酶 (GSH-Px) 和过氧化物酶 (POD) 作为抗氧化防御系统的标志物;酸性磷酸酶 (ACP)、碱性磷酸酶 (AKP)、溶菌酶 (LZM) 作为免疫系统的标志物。上述所有检测均使用南京建成生物工程研究所试剂盒,所有指标的测定严格按照说明书进行操作。采用酶标仪 (SYNERGY-HT) 或分光光度计 (UV-1800BPC) 测定各项指标。

    采用Excel 2010软件整理数据,以“平均值±标准差 ($\overline { x}\pm s $) ”表示 (n=3)。实验结果通过SPSS 25.0软件进行单因素方差分析 (One-way ANOVA),并用邓肯检验法分析组间差异性,显著性水平α为0.05。使用Origin 2022软件作图。

    实验至第48小时,仅pH 6.6处理组的幼鱼出现死亡,成活率为83%。各组之间无显著性差异 (P>0.05,图1)。

    图  1  酸化胁迫对黄鳍金枪鱼幼鱼成活率的影响
    注:相同字母表示组间无显著性差异 (P>0.05)。
    Figure  1.  Effect of acidification stress on survival rate of juvenile yellowfin tuna
    Note: Same letters represent no significant differences among groups (P>0.05).

    与对照组相比,各实验组皮肤的MDA含量均有所下降,红肌和鳃的MDA含量均有所上升。除对照组外,相同pH下肝脏中的MDA含量均显著高于其他组织 (P<0.05),且随着pH的降低呈上升趋势,在pH 6.6时含量最高 (图2)。

    图  2  酸化胁迫对黄鳍金枪鱼幼鱼丙二醛含量的影响
    注:相同pH下不同字母表示不同组织间差异显著 (P<0.05)。
    Figure  2.  Effect of acidification stress on MDA of juvenile yellowfin tuna
    Note: Different letters represent significant differences among different tissues with same pH (P<0.05).

    随着pH的降低,皮肤中的SOD活性呈先下降再上升的趋势,肝中的SOD活性呈下降趋势,二者均在pH 8.1时达到最高。红肌中的SOD活性在pH 7.6时最高。鳃中的SOD活性在pH 7.1时达到最高,且随着pH的降低呈先上升后下降的趋势;除对照组外,相同pH下鳃中的SOD活性均显著高于其他组织 (P<0.05,图3-a)。

    图  3  酸化胁迫对黄鳍金枪鱼幼鱼超氧化物歧化酶、过氧化氢酶、谷胱甘肽过氧化物酶和过氧化物酶活性的影响
    注:相同pH下不同字母表示不同组织间差异显著 (P<0.05)。
    Figure  3.  Effects of acidification stress on SOD, CAT, GSH-Px and POD activities of juvenile yellowfin tuna
    Note: Different letters represent significant differences among different tissues with the same pH (P<0.05).

    随着pH的降低,皮肤中的CAT活性呈下降趋势,在pH 8.1时活性最高。鳃和红肌中的CAT活性呈先上升再下降的趋势,在pH 7.1时达到最高;除对照组外,相同pH下鳃中的CAT活性均显著高于其他组织 (P<0.05)。肝中的CAT活性变化平稳,在pH 6.6时达到最高。相同pH下,肝和鳃中的CAT活性均显著高于皮肤和红肌 (P<0.05,图3-b)。

    随着pH的降低,皮肤、红肌和鳃中的GSH-Px活性变化相似,均呈先上升后下降的趋势,且均在pH 7.1时达到最高,此时皮肤中的GSH-Px活性显著高于其他组织 (P<0.05)。肝中的GSH-Px活性呈上升趋势,在pH 6.6时达到最高 (图3-c)。

    随着pH的降低,皮肤中的POD活性呈下降趋势,在pH 8.1时活性最高。红肌中各实验组的POD活性均高于对照组,在pH 6.6时达到最高。鳃中的POD活性呈先上升后下降的趋势,在pH 7.1时达到最高;相同pH下鳃中的POD活性均显著高于其他组织 (P<0.05)。肝中的POD活性呈先下降再上升的趋势,在pH 8.1时活性最高。除对照组外,相同pH下红肌和鳃中的POD活性均显著高于皮肤和肝 (P<0.05,图3-d)。

    随着pH的降低,肝和皮肤各实验组的ACP活性与对照组相比均有所下降;相同pH下肝中的ACP活性均显著高于其他组织 (P<0.05)。红肌中的ACP活性呈先上升后下降再上升的趋势,在pH 7.6时达到最高;鳃中的ACP活性呈先上升后下降的趋势,在pH 7.1时达到最高。相同pH下鳃中的ACP活性均显著低于其他组织 (P<0.05,图4-a)。

    图  4  酸化胁迫对黄鳍金枪鱼幼鱼酸性磷酸酶、碱性磷酸酶和溶菌酶活性的影响
    注:相同pH下不同字母表示不同组织间差异显著 (P<0.05)。
    Figure  4.  Effects of acidification stress on ACP, AKP and LZM activities of juvenile yellowfin tuna
    Note: Different letters represent significant differences among different tissues with the same pH (P<0.05).

    随着pH的降低,鳃、红肌和皮肤中的AKP活性呈先下降后上升的趋势,均在pH 8.1时最高。肝中的AKP活性呈上升趋势,在pH 7.1时达到最高。相同pH下红肌中的AKP活性均显著低于其他组织 (P<0.05,图4-b)。

    随着pH的降低,皮肤中的LZM活性呈先上升后下降的趋势,在pH 7.1时达到最高。鳃和红肌中的LZM活性呈上升趋势,均在pH 6.6时达到最高;相同pH下鳃中的LZM活性均显著高于其他组织 (P<0.05)。肝中的LZM活性在pH 7.1时达到最高 (图4-c)。

    MDA是脂质过氧化的重要产物[15],反映机体受氧化损伤的程度[16],其含量随着机体氧化应激水平升高而增加,含量越高表明鱼体所受的压力越大[17]。肝脏有排泄、解毒等多种功能,可清除外来有害物质和机体产生的有害废物[18];且含有大量与免疫相关的细胞,具有重要的免疫调节功能,在机体的免疫应答中发挥重要作用[19]。本研究中肝脏的MDA含量随海水酸度升高呈上升趋势,且累积含量显著高于其他组织。可能是由于金枪鱼处于应激状态,体内产生大量的活性氧自由基,脂质过氧化水平升高,机体出现了氧化损伤,与克氏原螯虾 (Procambarus clarkii)[20]的结果相似。

    SOD和CAT活性的变化可在一定程度上反映出机体受环境胁迫时免疫机能的变化[21]。GSH-Px在清除过氧化氢 (H2O2)、把脂质过氧化物还原成无毒产物方面起着至关重要的作用[22],其与CAT在清除自由基方面既是互补也是竞争关系[23]。SOD、CAT和GSH-Px协同作用,是抗氧化系统的重要组成部分[24]。POD和生物应激相关,可水解H2O2,对细胞起保护作用[25]

    鳃是鱼类主要的呼吸和免疫器官,表面积大且与水体直接接触,易受有害物质伤害[26];其黏膜中含有丰富的免疫分子,在抵御外界侵袭中发挥重要作用[27]。本研究中,各处理组鳃中的SOD、CAT和POD活性显著高于其他组织,且在pH 7.1时达到最高。说明酸性胁迫下金枪鱼组织中的活性氧自由基含量升高,诱导SOD、CAT和POD的活性升高,鱼体通过激活抗氧化酶系统促进蛋白质合成,改善代谢产物,保护细胞不受损伤,从而使鱼体能够适应低pH环境,达到新的动态平衡。但水体酸度过高时,鱼体会产生过量的氧自由基 (·O2−),机体无法产生足够的SOD和CAT来清除 ·O2−,且动物机体在受到环境胁迫时,SOD和CAT可能会发生抑制的应激变化[28],因此本研究鳃中的CAT活性在pH 6.6时有所回落。与沙塘鳢 (Odontobutis potamophila)[29]、瓦氏黄颡鱼 (Pelteobagrus vachelli)[30]和方斑东风螺 (Babylonia areolata)[31]的研究结果相似。

    鱼类皮肤的腺层内含有丰富的腺细胞,分泌的黏液中含有丰富的免疫因子,如溶菌酶、补体类物质等[32],构成了机体的第一道防线[33]。本研究中,皮肤的GSH-Px活性在pH 7.1时达到最高,显著高于其他组织,而CAT活性低于其他组织,可能是由于H2O2没有被CAT及时分解,诱导机体生成更多的GSH-Px来清除多余的H2O2。GSH-Px的活性升高,谷胱甘肽 (GSH) 等抗氧化物质就会消耗过大,可能导致机体受到损伤[34]。本研究中皮肤的GSH-Px活性在pH 7.1时大幅上升,推测此时鱼体无法适应过酸的海水,机体出现了损伤。与尖吻鲈 (Lates calcarifer) 幼鱼[35]和点篮子鱼 (Siganus guttatus) 幼鱼[36]的表现类似。

    磷酸酶又称正磷酸单酯水解酶,可以催化各种含磷化合物的水解,根据他们的特性 (即起催化作用的最适pH),可分为ACP和AKP两类[37],前者主要起催化效果,后者主要起调理和调节的作用[38]。当水体中溶解氧含量低于正常水平时,鱼体发生应激反应,并通过提高AKP和ACP的活性来增强非特异性免疫力[39]

    本研究中,肝脏的ACP活性显著高于其他组织,且随着pH的降低呈下降趋势;但AKP活性呈上升趋势,可能因为二者在肝脏中的作用不同。分析出现上述结果的原因,可能是海水酸度过高,机体为了维持酸碱和离子平衡而采取的一种调节措施,是生物体主动防御的表现。类似的报道还有脊尾白虾[11]和栉孔扇贝 (Chlamys farreri)[21]。鳃中的ACP和AKP变化不一致,可能是此时的环境pH影响了鳃细胞参与免疫的水解酶活性。类似的结果还见于翘嘴鳜 (Siniperca chuatsi) 幼鱼[40]和缢蛏 (Sinonovacula constricta) 成贝[41]

    LZM是衡量鱼类非特异性免疫的指标之一[42],在面对外界环境胁迫时,其活性会升高[43],活性越强,机体的非特异性免疫力就越强[44]。鳃中的LZM活性显著高于其他组织,且随海水酸度的升高呈上升趋势。可能是由于海水酸度的增加使金枪鱼处于应激状态,鱼体通过增加LZM的活性以抵抗外源环境的压力,属于自身的应急保护反应。

    本研究通过设置4组酸化梯度 (pH 8.1、7.6、7.1、6.6) 对黄鳍金枪鱼幼鱼进行48 h的环境胁迫,结果显示,酸化胁迫对黄鳍金枪鱼幼鱼的免疫功能和抗氧化防御系统影响显著。抗氧化物质在pH 6.6时达到最高;抗氧化酶的活性多数在pH 7.1时达到最高;非特异性免疫酶变化不一,不同酶的活性因组织不同而呈类似或不同的变化趋势。提示黄鳍金枪鱼幼鱼在pH大于7.1的酸化环境中有一定的调节能力,pH小于7.1时免疫系统发生紊乱。整体而言,肝脏和鳃中的酶活性高于红肌和皮肤,这表明在面对海水酸度升高时,肝脏和鳃中的抗氧化酶和免疫酶能更好地表达,二者抗氧化酶和免疫酶的变化可以代表黄鳍金枪鱼幼鱼机体免疫功能和抗氧化防御系统的变化。

  • 图  1   2013—2017年中西太平洋金枪鱼自由鱼群渔场重心月间变化轨迹

    Figure  1.   Monthly variation of of gravity center of tuna free-swimming school in Western and Central Pacific Ocean from 2013 to 2017

    图  2   2013—2017年中西太平洋金枪鱼自由鱼群渔获量时空分布以及南方涛动指数与渔场重心变化

    Figure  2.   Spatio-temporal distribution of catch, Southern Oscillation Index and fishing ground gravity center shift of tuna free-swimming school in Western and Central Pacific Ocean from 2013 to 2017

    图  3   南方涛动指数与渔场重心经度交叉相关分析

    Figure  3.   Cross-correlation analysis between Southern Oscillation Index and longitude of fishing ground gravity

    图  4   不同南方涛动指数下自由鱼群捕捞位置及产量分布

    a. 南方涛动指数在0附近时 (2017年1月);b. 南方涛动指数为最大值时 (2013年6月);c.南方涛动指数最小值时 (2015年8月)

    Figure  4.   Fishing position and yield distribution of free-swimming school with different Southern Oscillation Index

    a. SOI was about 0 (January 2017); b. SOI was maximum (June 2013); c. SOI was maximum (August 2015)

    表  1   2013—2017年中国中西太平洋金枪鱼围网船队捕捞自由鱼群的作业概况

    Table  1   Fishing status of tuna free-swimming school caught by Chinese purse seiner in Western and Central Pacific Ocean from 2013 to 2017

    年份
    Year
    作业特征 Fishing characteristics
    经度范围
    Longitude range
    纬度范围
    Latitude range
    投网次数
    Set
    渔获产量
    Catch/t
    2013 141.5°E—171.11°W 7.1°N—7°S 1 601 24 167.4
    2014 147.02°E—170.59°W 6.9°N—9.8°S 1 271 21 450
    2015 138.1°E—154.3°W 10.8°N—10.6°S 1 611 32 812
    2016 141.43°E—149.58°W 7.9°N—8.7°S 1 600 31 873
    2017 141.1°E—175.94°W 5.75°N—12.2°S 1 594 26 243.2
    总计 Total 7 677 136 545.6
    下载: 导出CSV
  • [1]

    TRIGUEROS-SALMERON J A, ORTEGA-GARCIA S. Spatial and seasonal variation of relative abundance of the skipjack tuna Katsuwonus pelamis (Linnaeus, 1758) in the Eastern Pacific Ocean (EPO) during 1970−1995[J]. Fish Res, 2001, 49(3): 1-232.

    [2] 孟晓梦, 叶振江, 王英俊. 世界黄鳍金枪鱼渔业现状和生物学研究进展[J]. 南方水产, 2007, 3(4): 74-80.
    [3] 陈新军, 郑波. 中西太平洋金枪鱼围网渔业鲣鱼资源的时空分布[J]. 海洋学研究, 2007, 25(2): 13-22. doi: 10.3969/j.issn.1001-909X.2007.02.002
    [4] 郭爱, 陈新军. ENSO与中西太平洋金枪鱼围网资源丰度及其渔场变动的关系[J]. 海洋渔业, 2005, 27(4): 338-342. doi: 10.3969/j.issn.1004-2490.2005.04.015
    [5]

    LEHODEY P, ALHEIT J, BARAANGE M, et al. Climate variability, fish, and fisheries[J]. J Climate, 2006, 19(20): 5009-5030. doi: 10.1175/JCLI3898.1

    [6]

    KOENIGSTEIN S, MARK F C, GOESSLING-REISEMANN S, et al. Modelling climate change impacts on marine fish populations: process-based integration of ocean warming, acidification and other environmental drivers[J]. Fish Fish, 2016, 17(4): 972-1004. doi: 10.1111/faf.12155

    [7]

    ANDERSON J J, GURARIE E, BRACIS C, et al. Modeling climate change impacts on phenology and population dynamics of migratory marine species[J]. Ecol Model, 2013, 264(4): 83-97.

    [8]

    MULLEN A J. Reaction diffusion models for dynamics distribution of yellowfin tuna[D]. London: University of London, 1992: 127.

    [9]

    LEHODEY P, BERTIGNAC M, HAMPTON J, et al. El Niño Southern Oscillation and tuna in the western Pacific[J]. Nature, 1997, 389(6652): 715-718. doi: 10.1038/39575

    [10] 黄易德. 中西太平洋正鲣资源时空分布特性的研究[D]. 基隆: 国立台湾海洋大学, 2002: 83.
    [11] 李政纬. ENSO现象对中西太平洋鲣围网渔况之影响[D]. 基隆: 国立台湾海洋大学, 2005: 16.
    [12] 胡奎伟, 朱国平, 王学昉, 等. 中西太平洋鲣鱼丰度的时空分布及其与表温的关系[J]. 海洋渔业, 2011, 33(4): 417-422. doi: 10.3969/j.issn.1004-2490.2011.04.008
    [13] 周甦芳, 沈建华, 樊伟. ENSO现象对中西太平洋鲣鱼围网渔场的影响分析[J]. 海洋渔业, 2004, 26(3): 167-172. doi: 10.3969/j.issn.1004-2490.2004.03.002
    [14] 郭爱, 陈新军, 范江涛. 中西太平洋鲣鱼时空分布及其与ENSO关系探讨[J]. 水产科学, 2010, 29(10): 591-596. doi: 10.3969/j.issn.1003-1111.2010.10.006
    [15]

    WANG X F, XU L X, CHEN Y, et al. Impacts of fish aggregation devices on size structures of skipjack tuna Katsuwonus pelamis[J]. Aquat Ecol, 2012, 46(3): 343-352. doi: 10.1007/s10452-012-9405-0

    [16]

    DRUON J N, EMMANUEL C, FLOCH L, et al. Preferred habitat of tropical tuna species in the Eastern Atlantic and Western Indian Oceans: a comparative analysis between FAD-associated and free-swimming schools[C]// IOTC WPTT-17, 2015: 7-16.

    [17]

    MILLER A M M, BUSH S R, van ZWIETEN P A M. Sub-regionalisation of fisheries governance: the case of the Western and Central Pacific Ocean tuna fisheries[J]. Maritime Stud, 2014, 13(1): 17. doi: 10.1186/s40152-014-0017-2

    [18]

    SIBERT J, HAMPTON J, KLEIBER P, et al. Biomass, size, and trophic status of top predators in the Pacific Ocean[J]. Science, 2006, 314(586): 1773-1776.

    [19] 何珊, 王学昉, 戴小杰, 等. 中国金枪鱼围网船队大眼金枪鱼渔获物的特征变化与人工集鱼装置禁渔期的关系[J]. 南方水产科学, 2017, 13(5): 110-116. doi: 10.3969/j.issn.2095-0780.2017.05.015
    [20] 周静亚, 杨大升. 海洋气象学[M]. 北京: 气象出版社, 1994: 105-119.
    [21] 唐峰华, 崔雪森, 杨胜龙, 等. 海洋环境对中西太平洋金枪鱼围网渔场影响的GIS时空分析[J]. 南方水产科学, 2014, 10(2): 18-26. doi: 10.3969/j.issn.2095-0780.2014.02.003
    [22] 汪金涛, 陈新军. 中西太平洋鲣鱼渔场的重心变化及其预测模型建立[J]. 中国海洋大学学报(自然科学版), 2013, 43(8): 44-48.
    [23] 陈世泳. 中西太平洋正鲣渔场推移与表面水温变异之关系[D]. 基隆: 国立台湾海洋大学, 2006: 25-26.
    [24]

    WANG X F, CHEN Y, TRUESDELL S, et al. The large-scale deployment of fish aggregation devices alters environmentally-based migratory behavior of skipjack tuna in the Western Pacific Ocean[J]. PLoS One, 2014, 9(5): e98226. doi: 10.1371/journal.pone.0098226

    [25] 杨晓明, 戴小杰, 田思泉, 等. 中西太平洋鲣鱼围网渔业资源的热点分析和空间异质性[J]. 生态学报, 2014, 34(13): 3771-3778.
    [26]

    TSENG C T, SUN C L, YEH S Z, et al. Spatio-temporal distributions of tuna species and potential habitats in the Western and Central Pacific Ocean derived from multi-satellite data[J]. Int J Remote Sens, 2010, 31(17/18): 4543-4558.

    [27]

    LEHODEY P. The pelagic ecosystem of the tropical Pacific Ocean: dynamic spatial modeling and biological consequences of ENSO[J]. Prog Oceanogr, 2001, 49(1): 439-468.

    [28]

    MATSUMOTO W M, SKILLMAN R A, DIZON A E. Synopsis of biological data on skipjack tuna, Katsuwonus pelamis. NOAA Technical Report NMFS Circular, No. 451[J]. FAO Fisheries Synopsis, 1984(136): 1-92.

    [29]

    LAN K W, EVANS K, LEE M A. Effects of climate variability on the distribution and fishing conditions of yellowfin tuna (Thunnus albacares) in the western Indian Ocean[J]. Climatic Change, 2013, 119(1): 63-77. doi: 10.1007/s10584-012-0637-8

    [30] 唐浩, 许柳雄, 陈新军, 等. 基于GAM模型研究时空及环境因子对中西太平洋鲣鱼渔场的影响[J]. 海洋环境科学, 2013, 32(4): 518-522.
    [31]

    LIN H L, LIAO C H. Spatio-temporal distribution of yellowfin tuna Thunnus albacares and bigeye tuna Thunnus obesus in the tropical Pacific Ocean in relation to large-scale temperature fluctuation during ENSO episodes[J]. Fish Sci, 2010, 67(6): 1046-1052.

  • 期刊类型引用(11)

    1. 肖佳程,赵一方,石耀华,顾志峰. 养殖密度对宝蓝鹦鹉鱼生长、生理与繁殖的影响. 热带生物学报. 2025(02): 304-311 . 百度学术
    2. 汪海燕,张永明,靳桂双,赵璐. 植物多糖的生物学功能及其在水产养殖中的应用. 饲料研究. 2024(09): 173-177 . 百度学术
    3. 高建伟,汪东升,邵锋锋. 加减大柴胡汤对胆总管结石患者湿热证候及肝功能的影响. 中医药临床杂志. 2024(06): 1144-1148 . 百度学术
    4. 夏伦斌,马龙龙,乔德亮,何燕飞,蒋平. 三角帆蚌多糖对肉仔鸡生长性能、抗氧化及免疫功能的影响. 浙江农业学报. 2023(03): 547-555 . 百度学术
    5. 田瑜,揭育鵾,曾祥兵,乐燕,刘广鑫,程长洪,马红玲,郭志勋. 密度对拟穴青蟹抗氧化、非特异性免疫能力的影响. 南方水产科学. 2023(03): 60-67 . 本站查看
    6. 刘清豪,张丹,陈卓,韦婉婷,王城城,金言,修彦凤. HPLC法同时测定炮制前后鸡内金中6种黄酮类成分. 中成药. 2023(08): 2618-2622 . 百度学术
    7. 李成辉,董宏标,郑晓婷,桂福坤,曾祥兵,明俊超,陈飞,陈健,张家松. 春砂仁精油对尼罗罗非鱼幼鱼生长、消化、抗氧化能力和血清生化指标的影响. 南方水产科学. 2023(06): 51-59 . 本站查看
    8. 黄健彬,迟艳,周传朋,黄小林,黄忠,虞为,荀鹏伟,吴杨,张宇,林黑着. 褐藻寡糖对卵形鲳鲹幼鱼生长性能、抗氧化能力和免疫功能的影响. 南方水产科学. 2022(03): 118-128 . 本站查看
    9. 贾慧凝,侍苗苗,卞永乐,侍崇敬,刘恒蔚,宋学宏,秦粉菊. 纳米硒对低氧胁迫下中华绒螯蟹免疫保护和抗氧化能力的影响. 南方水产科学. 2022(06): 100-109 . 本站查看
    10. 张慧,董宏标,孙彩云,陈健,黄聪灵,李勇,段亚飞,张家松. 饲料中添加月桂酸单甘酯对尖吻鲈脂质代谢与肝脏功能的影响. 海洋渔业. 2022(06): 736-746 . 百度学术
    11. 范思远,张海瑜,周永雨,尹秀雯,刘紫嫣,魏峰. 香菇菌丝体多糖对肉鸡生长性能、免疫功能及抗氧化性能的影响. 饲料研究. 2021(23): 41-44 . 百度学术

    其他类型引用(6)

图(4)  /  表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 17
出版历程
  • 收稿日期:  2019-08-15
  • 修回日期:  2019-11-08
  • 录用日期:  2019-12-02
  • 网络出版日期:  2019-12-09
  • 刊出日期:  2020-04-04

目录

/

返回文章
返回