密度对拟穴青蟹抗氧化、非特异性免疫能力的影响

田瑜, 揭育鵾, 曾祥兵, 乐燕, 刘广鑫, 程长洪, 马红玲, 郭志勋

田瑜, 揭育鵾, 曾祥兵, 乐燕, 刘广鑫, 程长洪, 马红玲, 郭志勋. 密度对拟穴青蟹抗氧化、非特异性免疫能力的影响[J]. 南方水产科学, 2023, 19(3): 60-67. DOI: 10.12131/20220312
引用本文: 田瑜, 揭育鵾, 曾祥兵, 乐燕, 刘广鑫, 程长洪, 马红玲, 郭志勋. 密度对拟穴青蟹抗氧化、非特异性免疫能力的影响[J]. 南方水产科学, 2023, 19(3): 60-67. DOI: 10.12131/20220312
TIAN Yu, JIE Yukun, ZENG Xiangbing, YUE Yan, LIU Guangxin, CHENG Changhong, MA Hongling, GUO Zhixun. Effect of density on antioxidant and nonspecific immunity of mud crab (Scylla paramamosain)[J]. South China Fisheries Science, 2023, 19(3): 60-67. DOI: 10.12131/20220312
Citation: TIAN Yu, JIE Yukun, ZENG Xiangbing, YUE Yan, LIU Guangxin, CHENG Changhong, MA Hongling, GUO Zhixun. Effect of density on antioxidant and nonspecific immunity of mud crab (Scylla paramamosain)[J]. South China Fisheries Science, 2023, 19(3): 60-67. DOI: 10.12131/20220312

密度对拟穴青蟹抗氧化、非特异性免疫能力的影响

基金项目: 国家虾蟹产业技术体系 (CARS-48)
详细信息
    作者简介:

    田 瑜 (1996—),男,硕士研究生,研究方向为青蟹病害防治。E-mail: 3053643129@qq.com

    通讯作者:

    郭志勋 (1970—),男,研究员,博士,研究方向为水产病害防治。E-mail: guozhixun1@163.com

  • 中图分类号: S 968.25+1

Effect of density on antioxidant and nonspecific immunity of mud crab (Scylla paramamosain)

  • 摘要: 密度胁迫会对水生动物的免疫和抗氧化功能等产生负面影响。为提高拟穴青蟹 (Scylla paramamosain) 养殖产量潜力,为其养殖业发展提供理论依据,通过将拟穴青蟹置于8 只·m−2 (低密度组)、16 只·m−2 (中密度组)、32 只·m−2 (高密度组) 3种不同密度条件下养殖72 h,研究了密度对拟穴青蟹抗氧化和免疫能力的影响。抗氧化酶活结果表明:高密度组过氧化氢酶 (CAT) 和超氧化物歧化酶 (SOD) 活性均显著高于低密度和中密度组 (P<0.05),而谷胱甘肽过氧化物酶 (GSH-Px) 活性在各组之间无显著性差异;高密度组丙二醛 (MDA) 含量与低密度和中密度组相比显著升高。免疫酶活结果表明,高密度组酸性磷酸酶 (ACP)、碱性磷酸酶 (AKP) 和溶菌酶 (LZM) 活性均显著低于低密度和中密度组 (P<0.05),而中密度组ACP、AKP、LZM活性与低密度组无显著性差异。荧光定量结果显示,高密度组热休克蛋白70基因 (HSP70) 表达水平呈先降低后升高趋势,且在养殖第6—第48小时均显著低于低密度和中密度组 (P<0.05);高密度组Caspase 3基因表达水平在养殖6 h后显著升高,在第24小时达到最高后逐渐下降,但其表达水平始终显著高于低密度组 (P<0.05)。综上,高密度养殖会对拟穴青蟹造成氧化损伤,进而导致其免疫能力下降。16 只·m−2的养殖密度对拟穴青蟹抗氧化和免疫能力无显著影响。
    Abstract: Density stress has a negative impact on the immune and antioxidant functions of aquatic animals. In order to improve the potential production of mud crab (Scylla paramamosain) and provide a theoretical basis for its aquaculture development, we cultured the mud crabs for 72 h at three different densities: 8 ind·m−2 (Low density group), 16 ind·m−2 (Medium density group), and 32 ind·m−2 (High density group) to study the effects of density on the antioxidant and immune capacity of mud crabs. The results of antioxidant enzyme activity show that the activities of catalase (CAT) and superoxide dismutase (SOD) in the high density group were significantly higher than those in the low density and medium density groups (P<0.05), but there was no significant difference in the glutathione peroxidase (GSH-Px) activity among the groups. Additionally, the malondialdehyde (MDA) content in the high density group was significantly higher than that in the low density and medium density groups. The activities of acid phosphatase (ACP), alkaline phosphatase (AKP) and lysozyme (LZM) in the high density group were significantly lower than those in the low density and medium density groups (P<0.05), but there was no significant difference between the medium density group and the low density group. The real-time PCR results indicate that the heat shock protein 70 (HSP70) expression level in the high density group decreased first and then increased, significantly lower than that in low density and medium density groups from 6th hour to 48th hour (P<0.05). The expression level of Caspase 3 in the high density group increased significantly after 6 h and decreased gradually after reaching the maximum level at 24th hour, but was always significantly higher than that in the low density group (P<0.05). In conclusion, high density culture can cause oxidative damage, leading to the decline of immunity of mud crabs. The stock density of 16 ind·m−2 has no significant effects on the antioxidant and immune abilities of mud crabs.
  • 南海是中国最大的陆缘海,跨越热带与亚热带气候区,具有丰富的海洋生物资源,为海洋渔业的发展提供了有利的天然条件。1979—2017年南海区海洋捕捞产量基本呈上升趋势,产量峰值为382.8×104 t[1]。捕捞渔具主要有拖网、刺网、围网、钓具及张网等,其中拖网产量在南海区海洋捕捞总产量中的占比曾高达约60%[2],近年来有所降低,但拖网渔业依然是南海区海洋捕捞业的主要生产方式之一。拖网属于过滤性的运动渔具,其主要依靠船舶运动的拖曳在海底或海水中移动,迫使水域中的捕捞对象进入其中。由于拖网主动灵活、适应性强,在各种水层、深度和海区均能作业[3]。拖网渔获对象非常广泛,不仅包括各种底层鱼类,还包括中上层鱼类、甲壳类、头足类和贝类等,而且不同海域渔获物组成差异也较大[4-7]

    在渔业资源丰富的二十世纪五六十年代,广大渔业技术工作者和渔民对拖网渔具进行了一系列的改造和更新,如放大网具前端网目尺寸、扩大网具规格,其主要目的是提高捕捞产量[8]。然而,至70年代末期,渔业资源开始衰退,为合理利用资源,在1981年确定了南海区拖网网囊最小网目尺寸为39 mm[9]。虽然放大了传统菱形网目网囊尺寸,但仍能捕获大量幼鱼,90年代中期开始对拖网网囊网目选择性进行试验[8]。针对拖网网囊选择性差的问题,科技工作者开展了大量的试验研究[10-14],其中菱形网目有利于扁体形鱼类的逃逸,而方形网目更有利于圆体形鱼类的逃逸,于是网囊混合网目的设计应运而生,即同一网囊中包含菱形目和方形目两种网目[12]。近年来,较多研究从渔业资源可持续发展和利用角度出发对拖网网具进行改良设计[13-15]。杨吝等[16]对南海区拖网网囊最小网目尺寸的选择性研究发现南海区拖网最好使用方形网目网囊,网目尺寸不应小于40 mm。然而,在实际生产中,仍基本使用传统的菱形网目网囊,鲜少使用方形网目网囊[17-18]。本文通过收集历史资料及结合渔业资源调查数据,对南海区拖网渔业发展状况及其对渔业资源的影响进行分析,以期为拖网渔业的发展和管理提供参考。

    南海区拖网渔业分析数据来源于1986—2020年的《中国渔业统计年鉴》与《南海区渔业统计资料汇编》,本文综合分析南海区拖网渔业的生产投入要素 (如渔船数量、吨位、功率等) 及产量的变化趋势。

    根据2018年2月12日农业农村部发布的《关于实施带鱼等15种重要经济鱼类最小可捕标准及幼鱼比例管理规定的通告》,共收集了其中8种鱼类规格的生物学数据 (表1),来自1992—2020年20个航次的南海北部近海底拖网渔业资源调查,其中网囊网目为菱形目,尺寸除1998—1999年为20 mm外,其他航次均为39 mm。本文定义未达到最小可捕规格的鱼类个体为幼鱼。

    表  1  8种重要经济鱼类种名及其最小可捕规格
    Table  1.  Eight important economic fish species and their        minimum catchable sizes      mm
    种名
    Species
    可捕规格 Catchable size
    肛长
    Anus
    length
    叉长
    Fork
    length
    体长
    Body
    length
    带鱼 Trichiurus japonicus ≥230
    竹荚鱼 Trachurus japonicus ≥150
    刺鲳 Psenopsis anomala ≥130
    蓝圆鲹 Decapterus maruadsi ≥150
    短尾大眼鲷 Priacanthus macracanthus ≥160
    白姑鱼 Argyrosomus argentatus ≥150
    二长棘犁齿鲷 Evynnis cardinalis ≥100
    黄鳍马面鲀 Thamnaconus hypargyreus ≥100
    下载: 导出CSV 
    | 显示表格

    根据1986—2020年广东、广西和海南三省区海洋捕捞机动渔船统计数据,南海区总渔船数在51 134~96 441艘之间波动,1986—2003年呈上升趋势,之后开始呈逐年下降趋势;总吨位在 444 906~1 982 775 t之间波动,总功率在931 510~3 981 892 kW之间波动,均呈上升趋势。其中拖网渔船数量在6 730~14 599艘之间波动,1986—2003总体呈上升趋势,之后下降至7 725艘 (2009年),2010年后基本维持在9 000艘左右;拖网渔船吨位在212 864~876 045 t之间波动,呈显著上升趋势 (r=0.974, P<0.01);拖网渔船功率在440 438~1 735 173 kW之间波动,1986—2005 年呈上升趋势,之后开始呈下降趋势。1986—2020 年南海区拖网渔船数量比在9.78%~18.27%之间波动,吨位比在43.18%~56.88%之间波动,功率比在36.87%~57.88%之间波动,拖网渔船数量、吨位和功率占该海区总渔船数量、吨位和功率的比例均呈下降趋势 (图1-a—1-c);1986—2020年拖网渔船单船平均吨位和功率分别在31.31~127.71 t 和 65.44~220.33 kW之间波动,两者均呈显著上升趋势 (r=0.884, P<0.01; r=0.929, P<0.01) (图1-d)。

    图  1  1986—2020年南海区拖网渔船数量、吨位及功率变化趋势
    Figure  1.  Variation trends in number, tonnage and power of trawlers in South China Sea from 1986 to 2020

    根据1986—2020年广东、广西和海南三省海洋捕捞产量数据的统计,南海区海洋总捕捞产量在94.08×104~369.05×104 t之间波动,2006年产量达到最高;拖网渔业产量在59.24×104~181.66×104 t之间波动,1999年达到最高,呈先上升后下降的变化趋势;拖网渔业产量占总捕捞产量的比例在38.35%~62.96%之间波动,呈显著下降趋势 (r=−0.979, P<0.01) (图2-a)。每千瓦拖网渔船渔获产量在0.72~1.40 t之间波动,1999年最高,之后呈显著下降趋势 (r=−0.692, P<0.01);每吨位拖网渔船渔获产量在1.18~3.90 t之间波动,1999年最高,之后也呈显著下降趋势 (r=−0.636, P<0.01) (图2-b)。

    图  2  1986—2020年南海区拖网渔业产量变化趋势
    Figure  2.  Variation trend of trawl fishery yield in South China Sea from 1986 to 2020

    南海北部底拖网调查中8种重要经济鱼类幼鱼数量和生物量占比变化情况分别见图3图4。从图中可以看出,幼鱼数量比和生物量比变化情况基本相同,其中生物量比较数量比低。渔获物中幼鱼数量和生物量占比均值最高为白姑鱼 (Argyrosomus argentatus),其次为带鱼 (Trichiurus japonicus) 和竹荚鱼 (Trachurus japonicus),二长棘犁齿鲷 (Evynnis cardinalis) 最低 (表2)。根据管理规定要求,2020年起渔获物中幼鱼比例低于20%才算达标,若以20%作为参照标准,1992—2020年8种重要经济鱼类的达标率由高到低依次为:刺鲳 (Psenopsis anomala) 44.44%、蓝圆鲹 (Decapterus maruadsi) 42%、二长棘犁齿鲷40%、黄鳍马面鲀 (Thamnaconus hypargyreus) 25%、竹荚鱼11.11%、带鱼10%、白姑鱼9.09%、短尾大眼鲷 (Priacanthus macracanthus) 0%。在2020年的2个航次调查中,带鱼、短尾大眼鲷和白姑鱼均未达标,其他5种鱼类1个航次达标。

    图  3  1992—2020年拖网调查渔获物中8种重要经济鱼类幼鱼数量占比
    Figure  3.  Proportions of juveniles of eight important economic fish species in bottom trawl survey catches from 1992 to 2020
    图  4  1992—2020年底拖网调查渔获物中8种重要经济鱼类幼鱼生物量占比
    Figure  4.  Biomass proportion of juveniles of eight important economic fish species in bottom trawl survey catches from 1992 to 2020
    表  2  8 种重要经济鱼类幼鱼占比
    Table  2.  Proportion of juveniles of eight important economic fish species
    种名
    Species
    数量占比 Quantity proportion/% 生物量占比 Biomass proportion/%
    范围 Range均值 Mean 范围 Range均值 Mean
    带鱼 Trichiurus japonicas 20.63~99.58 79.30±18.42   8.59~97.88 56.57±24.46
    短尾大眼鲷 Priacanthus macracanthus 32.50~98.00 70.37±19.57 22.80~90.13 49.19±20.21
    竹荚鱼 Trachurus japonicas 3.36~100 76.27±26.62 1.02~100 62.40±28.39
    刺鲳 Psenopsis anomala 0.81~96.00 40.83±30.12 0.42~92.14 28.82±26.50
    蓝圆鲹 Decapterus maruadsi 0~92.77 46.14±32.26 0~86.48 31.71±27.41
    白姑鱼 Argyrosomus argentatus 43.28~100 89.84±17.08 17.12~100 84.28±26.20
    二长棘犁齿鲷 Evynnis cardinalis 0~94.71 40.09±27.84 0~85.75 24.35±23.33
    黄鳍马面鲀 Thamnaconus hypargyreus 22.00~100 63.55±30.08   16.80~100 52.62±32.26
    下载: 导出CSV 
    | 显示表格

    拖网是南海海洋渔业生产的主要作业类型之一。数据分析显示,目前南海区拖网渔业呈现出捕捞强度大、生产效益低的特点。其中,拖网渔业捕捞强度大主要体现在渔船数量、吨位及功率等的增加及助渔技术更加先进等方面,2003年的渔船数量是1986年的2.17倍,虽然之后船数减少,但渔船吨位和功率却在不断上升,其中2020年拖网渔船吨位是1986年的4.12倍,而功率是1986年的3.24倍,说明捕捞强度成倍增加。传统渔民靠海水观测鱼群,靠指南针辨别方向,现如今渔船基本配置了探渔仪、GPS导航及起重设备等先进仪器设备,从而极大地提升了捕捞效率。1986—2020年南海区拖网渔船单船平均功率和吨位不断增加,但单位产量自1999年后却呈下降趋势,表明捕捞效率降低,加之2005年后柴油价格持续上涨[19],渔业生产成本不断上升,因此,拖网捕捞生产效益不断下降。

    拖网渔业最大的问题是网具网目尺寸不合规、捕捞选择性不强,致使渔获物组成多样性和幼鱼渔获率均非常高[20]。据相关调查,有的拖网渔业幼鱼和低值渔获率占比高达70%[21],黄梓荣[22]采用404/200 mm底拖网在南海北部进行渔业资源调查发现,渔获中未达到可捕规格的幼鱼比例超过30%。虾拖网为单船底拖网的一种,是副渔获最高的网具之一,其虾与副渔获的质量比高达1∶3.9,而副渔获中幼鱼渔获比例高达57%以上[23]。本研究也发现在底拖网渔获物中,8种重要经济鱼类幼鱼生物量占比均值高于24%,有的甚至高达84%,数量占比则更高。拖网过度捕捞也是造成渔业资源种群结构变化的重要原因[24],尤其是底层经济鱼类。由于这些种类体型相对较大,生命周期较长,性成熟较晚,其种群恢复能力相对较差,因此,长期高强度的捕捞作业导致这些种类数量大幅下降[25]。如底栖鱼类红笛鲷 (Lutjanus sanguineus)、大头狗母鱼 (Trachiocephalus myops) 、摩鹿加绯鲤 (Upeneus moluccensis) 和断斑石鲈 (Pomadasys hasta),20世纪60年代在北部湾底拖网渔获物中占比分别为14.45%、5.9%、4.93%和2.39%,然而至90年代这些种类在渔获物中的占比大幅下降,有些种类甚至难寻踪迹[26]

    此外,底拖网作业会对海洋生态环境造成较大破坏,主要包括直接或间接地影响海床、生境、营养级及生物多样性等。由于拖网通常装配较重的沉纲,尤其是虾拖网为了驱赶海底的虾类还装配了铁链,在捕捞过程中横扫海底,严重破坏了海底生态环境,对海洋生物的栖息、生长和繁殖产生严重的负面影响[2,21]。Paradis等[27]研究发现拖网渔具与海床的连续接触导致海底侵蚀,破坏沉积环境,进而影响底层生物群落的营养状态。长期的底拖网作业会导致渔场及其邻近海域大型底栖生物丰度显著降低[28],底栖生物群落功能组成发生变化[29]。而底栖生物的生物量和多样性的降低以及体型的减小,可能对底层鱼类的摄食产生负面影响,进而影响鱼类的身体状况和产量[30]。de Leo 等[31]研究发现中等程度的拖网区域底栖生物群落物种丰富度最高,表明适当程度的拖网作业对底层生态环境有一定的积极作用。

    目前,海洋伏季休渔制度是为保护中国周边海域鱼类等资源在夏季生长繁殖而采取的措施,这也是当前中国最重要和最有效的渔业资源管理措施之一,最新的海洋伏季休渔制度已于2017年颁布实施。严利平等[32]通过拖网调查分析发现,由于提前并延长休渔时间,东、黄海主要经济渔业资源—带鱼和小黄鱼得到了进一步保护,资源增殖效果相对明显。延长伏季休渔时间,有利于海洋环境自我修复,相对减轻拖网作业带来的负面影响。因此,应严格执行伏季休渔制度,严厉打击非法捕捞和在禁渔区线内非法拖网作业,同时还应严格执行捕捞网具最小网囊网目尺寸及可捕标准等相关管理规定。由于拖网时下纲会不可避免地与海底接触,对海底的破坏相当严重。鉴于拖网是南海传统捕捞类型,对于提供优质动物蛋白有一定的积极作用。因此,可通过采取控制拖网渔船数量、拖网时间及海域等方法措施,达到既利用海洋底层渔业资源又保护海洋生态环境的目的。

    为促使南海拖网渔业的良性发展,还应加强相关领域的科技支撑,如创新网囊网目的设计、研发选择性装置、改良拖网网具下纲、开发柔性网板及拖网渔具自动化和智能化等。王永进等[33]认为扩大网具前部网目尺寸、改进网目结构能够减少阻力,提高网口垂直高度,扩大网具规模,从而提高拖网渔具的性能。有研究发现选择性渔具的开发和应用能有效减少虾拖网作业的副渔获[34-35],其中最直接、有效的技术手段为放大网囊网目尺寸和应用选择性装置[36-37]。Sala等[38]研究指出方形网目能大大提高捕捞选择性,然而该种网目不太适宜像比目鱼这种扁平鱼类的逃逸。杨炳忠等[12]发现35 mm方目+25 mm菱目在兼顾生产效益和保护渔业资源方面效果最佳。也有研究发现柔性网板具有轻便、对海底环境破坏小和阻力小等优点[39]。拖网渔具的自动化和智能化对拖网作业水平和捕捞效率将有质的提升,是提高海洋渔业科技水平的关键[40]。海洋渔具的发展变革与渔业资源的盛衰有着密切关系,因此,建议从渔业资源可持续发展和利用的角度出发,加大拖网网具的研发力度,大力推广使用选择性强、经济节能、生产效益高及环境友好型的网具。

    由于近海渔业资源衰退,生产成本增加,拖网渔船效益降低,如何加快推进渔民转产转业,实现产业升级,已成为渔业管理亟待解决的问题。一方面应加强渔民就业技能培训,努力增加转型就业机会;另一方面要加大捕捞压力向外海转移力度,发展外海渔业。张俊等[41]对南海外洋性渔业资源进行的评估分析显示,南海深水区蕴藏着丰富的大洋性渔业资源,大型金枪鱼、鲣类、鲹类、日本乌鲂 (Brama japonica) 和鸢乌贼 (Sthenototeuthis oualaniensis)的资源量分别为22.8×104、85×104、54.3×104、27.4×104和457×104 t,表明南海外海渔业资源具有较大的开发潜力。因此,应逐步淘汰功率小、效益低的拖网渔船,建造适合远洋作业及生态友好的大型渔船,引导有条件的渔船往外海发展,将捕捞压力逐渐转向外海。

  • 图  1   密度对拟穴青蟹鳃组织过氧化氢酶、超氧化物歧化酶、谷胱甘肽过氧化物酶活性和丙二醛含量的影响

    注:同一坐标轴上的不同小写字母表示差异显著 (P<0.05);后图同此。

    Figure  1.   Effect of density on activities of CAT, SOD, GSH-Px and MDA content in gill tissue of S. paramamosain

    Note: Values with different lowercase letters at the same time have significant differences (P<0.05). The same case in the following figures.

    图  2   密度对拟穴青蟹鳃组织酸性磷酸酶、碱性磷酸酶、溶菌酶活性的影响

    Figure  2.   Effect of density on activities of ACP, AKP and LZM in gill tissue of S. paramamosain

    图  3   密度对拟穴青蟹鳃组织中HSP70Caspase 3基因表达的影响

    Figure  3.   Effect of density on expression of HSP70 and Caspase 3 genes in gill tissue of S. paramamosain

    表  1   实时荧光定量PCR引物

    Table  1   Real-time fluorescence quantitative PCR primers

    引物
    Primer
    引物序列 (5'—3')
    Primer sequence (5'−3')
    RT-caspase 3-F ACGAAGTGAGGGGATTATGCC
    RT-caspase 3-R CAGCCCATCCAGCGAGC
    RT-HSP70-F AGGACAAGGTGAGCGAAGAGG
    RT-HSP70-R TTGGTGATGATGGGGTTACAGA
    RT-18S-F CCTCGTTCATGGGAGACAAT
    RT-18S-R CTAGTCGACGGATCTCCAGC
    下载: 导出CSV
  • [1]

    LUPATSCH I, SANTOS G A, SCHRAMA J W, et al. Effect of stocking density and feeding level on energy expenditure and stress responsiveness in European sea bass Dicentrarchus labrax[J]. Aquaculture, 2010, 298(3): 245-250.

    [2]

    GAO Y, HE Z L, VECTOR H, et al. Effect of stocking density on growth, oxidative stress and hsp 70 of Pacific white shrimp Litopenaeus vannamei[J]. Turkish J Fish Aquat Sci, 2017, 17(5): 877-884.

    [3]

    WYBAN J A, LEE C S, SATO V T, et al. Effect of stocking density on shrimp growth rates in manure-fertilized ponds[J]. Aquaculture, 1987, 61(1): 23-32. doi: 10.1016/0044-8486(87)90334-6

    [4]

    HENGSAWAT K, WARD F J, JARURATJAMORN P. The effect of stocking density on yield, growth and mortality of African catfish (Clarias gariepinus Burchell 1822) cultured in cages[J]. Aquaculture, 1997, 152(1): 67-76.

    [5]

    BOLASINA S, TAGAWA M, YAMASHITA Y, et al. Effect of stocking density on growth, digestive enzyme activity and cortisol level in larvae and juveniles of Japanese flounder, Paralichthys olivaceus[J]. Aquaculture, 2006, 259(1): 432-443.

    [6] 范文浩, 方刘, 周锦, 等. 养殖密度对克氏原螯虾生长及消化酶、免疫酶活性的影响[J]. 水产科学, 2021, 40(2): 261-266.
    [7] 张海恩, 何玉英, 李健, 等. 密度胁迫对中国对虾幼虾生长、抗氧化系统功能及水质指标的影响[J]. 渔业科学进展, 2020, 41(2): 140-149.
    [8]

    LIU G, ZHU S M, LIU D Z, et al. Effects of stocking density of the white shrimp Litopenaeus vannamei (Boone) on immunities, antioxidant status, and resistance against Vibrio harveyi in a biofloc system[J]. Fish Shellfish Immunol, 2017, 67: 19-26. doi: 10.1016/j.fsi.2017.05.038

    [9] 宋黎黎. 越冬暂养对中华绒螯蟹生长、生理及品质的影响[D]. 上海: 上海海洋大学, 2021: 20-26
    [10] 毛振方. 池塘养殖密度对中华绒螯蟹 (Eriocheir sinensis) 生长性能和养殖水环境的影响[D]. 南昌: 南昌大学, 2019: 23-25.
    [11] 农业农村部渔业渔政管理局全国水产技术推广总站, 中国水产学会. 2021中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2021: 22-23.
    [12]

    GUO Z X, HE J G, XU H D, et al. Pathogenicity and complete genome sequence analysis of the mud crab dicistrovirus-1[J]. Virus Res, 2013, 171(1): 8-14. doi: 10.1016/j.virusres.2012.10.002

    [13] 许明珠, 张琴, 董兰芳, 等. 不同糖源对拟穴青蟹仔蟹的生长、体成分及消化酶的影响[J]. 水产科学, 2020, 39(2): 175-181.
    [14] 张林姿, 赵明, 张凤英, 等. 拟穴青蟹CYP302a1基因的克隆及表达模式分析[J]. 海洋渔业, 2021, 43(1): 31-41.
    [15] 陈小龙, 程长洪, 邓益琴, 等. 拟穴青蟹致病性副溶血弧菌分离鉴定及药敏试验[J]. 南方农业学报, 2020, 51(11): 2846-2855.
    [16]

    CHENG C H, LIU X Z, MA H L, et al. The role of caspase 3 in the mud crab (Scylla paramamosain) after Vibrio parahaemolyticus infection[J]. Fish Shellfish Immunol, 2021, 118: 213-218. doi: 10.1016/j.fsi.2021.09.010

    [17]

    LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method[J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262

    [18]

    WANG W N, ZHOU J, WANG P, et al. Oxidative stress, DNA damage and antioxidant enzyme gene expression in the Pacific white shrimp, Litopenaeus vannamei when exposed to acute pH stress[J]. Comp Biochem Physiol C, 2009, 150(4): 428-435.

    [19] 曾祥兵, 董宏标, 韦政坤, 等. 鸡内金多糖对尖吻鲈幼鱼生长、消化、肠道抗氧化能力和血清生化指标的影响[J]. 南方水产科学, 2021, 17(4): 49-57.
    [20]

    FRIDOVICH I. Superoxide dismutases: an adaptation to a paramagnetic gas[J]. J Biol Chem, 1989, 264(14): 7761-7764. doi: 10.1016/S0021-9258(18)83102-7

    [21]

    HE L, HE T, FARRAR S, et al. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species[J]. Cell Physiol Biochem, 2017, 44(2): 532-553. doi: 10.1159/000485089

    [22] 王新. 稻蟹养殖模式下不同放养密度对中华绒螯蟹生长、营养品质及抗氧化能力的影响[D]. 长春: 吉林农业大学, 2021: 43-44.
    [23] 陈勇. 饲养密度对克氏原螯虾成活率和肝胰腺三种免疫酶的影响[J]. 湖北农业科学, 2016, 55(16): 4237-4240.
    [24]

    JIE Y K, CHENG C H, WANG L C, et al. Hypoxia-induced oxidative stress and transcriptome changes in the mud crab (Scylla paramamosain)[J]. Comp Biochem Physiol C, 2021, 245: 109039.

    [25]

    TSIKAS D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges[J]. Anal Biochem, 2017, 524: 13-30. doi: 10.1016/j.ab.2016.10.021

    [26] 于赫男. 环境胁迫对罗氏沼虾和凡纳滨对虾行为、生长及生理活动的影响[D]. 广州: 暨南大学, 2007: 34-44.
    [27] 宋志飞, 温海深, 赵艳飞, 等. 流水养殖条件下养殖密度对俄罗斯鲟幼鱼非特异性免疫的影响[J]. 广西科学, 2017, 24(4): 389-395.
    [28]

    HUSSAIN S, SLIKKER W, ALI S F. Role of metallothionein and other antioxidants in scavenging superoxide radicals and their possible role in neuroprotection[J]. Neurochem Int, 1996, 29(2): 145-152. doi: 10.1016/0197-0186(95)00114-X

    [29] 倪金金, 王裕玉, 徐钢春, 等. 养殖密度对池塘工程化循环水养殖大口黑鲈抗氧化力、组织结构及应激基因表达的影响[J]. 中国水产科学, 2020, 27(6): 660-670.
    [30] 彭士明, 施兆鸿, 孙鹏, 等. 养殖密度对银鲳幼鱼生长及组织生化指标的影响[J]. 生态学杂志, 2010, 29(7): 1371-1376.
    [31] 王天神, 周鑫, 赵朝阳, 等. 不同温度条件下克氏原螯虾免疫酶活性变化[J]. 江苏农业科学, 2012, 40(12): 239-241.
    [32] 周素琴. 环境胁迫对养殖锯缘青蟹主要免疫因子的影响[D]. 青岛: 中国海洋大学, 2006: 35-40.
    [33] 黄永春, 郑伟刚, 黎中宝, 等. 凡纳滨对虾幼体不同培育密度对水质、仔虾生长、免疫和抗逆性能的影响[J]. 厦门大学学报 (自然科学版), 2020, 59(6): 947-953.
    [34]

    MONTERO D, IZQUIERDO M S, TORT L, et al. High stocking density produces crowding stress altering some physiological and biochemical parameters in gilthead seabream, Sparus aurata, juveniles[J]. Fish Physiol Biochem, 1999, 20(1): 53-60. doi: 10.1023/A:1007719928905

    [35] 刘树青, 江晓路, 牟海津, 等. 免疫多糖对中国对虾血清溶菌酶、磷酸酶和过氧化物酶的作用[J]. 海洋与湖沼, 1999(3): 278-283.
    [36]

    MAGNADOTTIR B. Immunological control of fish diseases[J]. Mar Biotechnol, 2010, 12(4): 361-379. doi: 10.1007/s10126-010-9279-x

    [37] 黄东科. 温度、盐度、密度和饵料对波纹龙虾存活、摄食和生长的影响[D]. 湛江: 广东海洋大学, 2014: 48-49.
    [38] 姚成杰, 刘佳珺, 林振烔, 等. 红螯光壳螯虾Hsp70基因的特征及其在热应激下的表达[J]. 集美大学学报 (自然科学版), 2021, 26(4): 289-298.
    [39]

    LIU B L, FEI F, LI X T, et al. Effects of stocking density on stress response, innate immune parameters, and welfare of turbot (Scophthalmus maximus)[J]. Aquac Int, 2019, 27(6): 1599-1612. doi: 10.1007/s10499-019-00413-2

    [40]

    ROBERTS R J, AGIUS C, SALIBA C, et al. Heat shock proteins (chaperones) in fish and shellfish and their potential role in relation to fish health: a review[J]. J Fish Dis, 2010, 33(10): 789-801. doi: 10.1111/j.1365-2761.2010.01183.x

    [41]

    CHENG C H, MA H L, DENG Y Q, et al. Oxidative stress, cell cycle arrest, DNA damage and apoptosis in the mud crab (Scylla paramamosain) induced by cadmium exposure[J]. Chemosphere, 2021, 263: 128277. doi: 10.1016/j.chemosphere.2020.128277

    [42]

    DONG H B, ZENG X B, WANG W H, et al. Protection of teprenone against anesthetic stress in gills and liver of spotted seabass Lateolabrax maculatus[J]. Aquaculture, 2022, 557: 738333. doi: 10.1016/j.aquaculture.2022.738333

    [43]

    LIN W, LI L, CHEN J, et al. Long-term crowding stress causes compromised nonspecific immunity and increases apoptosis of spleen in grass carp (Ctenopharyngodon idella)[J]. Fish Shellfish Immunol, 2018, 80: 540-545. doi: 10.1016/j.fsi.2018.06.050

  • 期刊类型引用(4)

    1. 蔡润基,彭小红,叶双福,张天晨,高月芳,吕俊霖. 基于前后端生成概率密度图模型的虾苗自动计数. 南方水产科学. 2025(01): 173-184 . 本站查看
    2. 俞圣池,李佳康,熊鑫泉,贺刘刚,何瑞麟,戴阳. 基于线激光三角测距法的鱼体测距研究. 渔业现代化. 2024(01): 80-89 . 百度学术
    3. 张佳泽,张胜茂,王书献,杨昱皞,戴阳,熊瑛. 基于3-2D融和模型的毛虾捕捞渔船行为识别. 南方水产科学. 2022(04): 126-135 . 本站查看
    4. 张胜茂,孙永文,樊伟,唐峰华,崔雪森,伍玉梅. 面向海洋渔业捕捞生产的深度学习方法应用研究进展. 大连海洋大学学报. 2022(04): 683-695 . 百度学术

    其他类型引用(3)

图(3)  /  表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 7
出版历程
  • 收稿日期:  2022-12-06
  • 修回日期:  2023-01-08
  • 录用日期:  2023-02-07
  • 网络出版日期:  2023-02-18
  • 刊出日期:  2023-06-04

目录

/

返回文章
返回