纳米硒对低氧胁迫下中华绒螯蟹免疫保护和抗氧化能力的影响

贾慧凝, 侍苗苗, 卞永乐, 侍崇敬, 刘恒蔚, 宋学宏, 秦粉菊

贾慧凝, 侍苗苗, 卞永乐, 侍崇敬, 刘恒蔚, 宋学宏, 秦粉菊. 纳米硒对低氧胁迫下中华绒螯蟹免疫保护和抗氧化能力的影响[J]. 南方水产科学, 2022, 18(6): 100-109. DOI: 10.12131/20220106
引用本文: 贾慧凝, 侍苗苗, 卞永乐, 侍崇敬, 刘恒蔚, 宋学宏, 秦粉菊. 纳米硒对低氧胁迫下中华绒螯蟹免疫保护和抗氧化能力的影响[J]. 南方水产科学, 2022, 18(6): 100-109. DOI: 10.12131/20220106
JIA Huining, SHI Miaomiao, BIAN Yongle, SHI Chongjing, LIU Hengwei, SONG Xuehong, QIN Fenju. Effects of nanometer selenium on immune protection and antioxidant ability of Eriocheir sinensis under hypoxia stress[J]. South China Fisheries Science, 2022, 18(6): 100-109. DOI: 10.12131/20220106
Citation: JIA Huining, SHI Miaomiao, BIAN Yongle, SHI Chongjing, LIU Hengwei, SONG Xuehong, QIN Fenju. Effects of nanometer selenium on immune protection and antioxidant ability of Eriocheir sinensis under hypoxia stress[J]. South China Fisheries Science, 2022, 18(6): 100-109. DOI: 10.12131/20220106

纳米硒对低氧胁迫下中华绒螯蟹免疫保护和抗氧化能力的影响

基金项目: 国家自然科学基金项目 (31772896);苏州市科技计划项目 (SNG2017055)
详细信息
    作者简介:

    贾慧凝 (1998—),女,硕士研究生,研究方向为环境生物技术。E-mail: jiahuining_a@163.com

    通讯作者:

    秦粉菊 (1976—),女,教授,博士,研究方向为环境毒理学和纳米营养学。E-mail: qinfenju@mail.usts.edu.cn

  • 中图分类号: S 963.73+4

Effects of nanometer selenium on immune protection and antioxidant ability of Eriocheir sinensis under hypoxia stress

  • 摘要: 低氧胁迫会减弱中华绒螯蟹 (Eriocheir sinensis) 的免疫机能和抗氧化能力。为揭示纳米硒 (nano-Se) 对低氧胁迫下中华绒螯蟹的免疫保护作用及抗氧化调控机制,在基础饲料中添加不同水平 (0、0.1、0.2、0.4、0.8和1.6 mg·kg−1) 的纳米硒饲喂中华绒螯蟹90 d。饲喂实验结束后,进行低氧胁迫实验并注射嗜水气单胞菌 (Aeromonas hydrophila)。结果表明:1) 低氧胁迫24 h和低氧胁迫下感染嗜水气单胞菌24 h的蟹死亡率分别可达62.45%和100%,低氧胁迫12 h使血淋巴中血蓝蛋白浓度、血细胞数量、组织中超氧化物歧化酶 (SOD)、过氧化氢酶 (CAT)、谷胱甘肽过氧化物酶 (GSH-Px) 活性显著升高 (P<0.05),胁迫至第24小时有下降趋势;乳酸 (LD) 和丙二醛 (MDA) 浓度在低氧胁迫12~24 h持续上升。2) 饲料中添加适量 (0.1~0.4 mg·kg−1) 纳米硒可显著降低低氧胁迫下蟹死亡率和低氧胁迫下嗜水气单胞菌的致死率 (P<0.05),显著提高低氧胁迫下血蓝蛋白浓度和血细胞数量以及抗氧化酶 (SOD、CAT、GSH-Px) 活性,降低LD和MDA浓度 (P<0.05);添加0.8~1.6 mg·kg−1纳米硒加剧了低氧胁迫损伤。结果表明饲料中添加适量纳米硒可改善低氧胁迫下中华绒螯蟹的免疫功能和抗氧化能力,且添加水平以0.2 mg·kg−1为宜。
    Abstract: Hypoxia stress will weaken the immune function and antioxidant capacity of Eriocheir sinensis. In order to reveal the immune protection and anti-oxidation regulation mechanism of nanometer selenium (nano-Se) on E. sinensis under hypoxia stress, we had fed E. sinensis with different doses of nano-Se (0, 0.1, 0.2, 0.4, 0.8 and 1.6 mg·kg−1) in basic diets for 90 d. After the feeding, we conducted a hypoxia stress test and injected Aeromonas hydrophila under hypoxia stress. The results show that: 1) The mortality of E. sinensis under hypoxia stress for 24 h and that infected with A. hydrophila under hypoxia stress reached 62.45% and 100%, respectively. The levels of hemocyanin and the hemocyte count in crab hemolymph, and the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in crab tissues increased significantly under hypoxia stress for 12 h (P<0.05), as well as there was a decreasing trend under stress to 24 h. The contents of lactic acid (LD) and malondialdehyde (MDA) continued to rise from 12 to 24 h under hypoxia stress. 2) Appropriate addition amount (0.1−0.4 mg·kg−1) of nano-Se reduced the mortality of E. sinensis significantly and the lethality of A. hydrophila under hypoxia stress (P<0.05), increasing the levels of hemocyanin, the hemocyte count and the activities of antioxidant enzymes (SOD, CAT, GSH-Px) under hypoxia stress significantly, but decreasing the contents of LD and MDA (P<0.05). The addition of 0.8−1.6 mg·kg−1 nano-Se had aggravated hypoxia stress injury. These results indicate that appropriate addition of nano-Se to the diets can improve the decrease of immune response and antioxidant ability of E. sinensis under hypoxia stress, and the optimal dose of nano-Se in basal diets is 0.2 mg·kg−1.
  • 长体圆鲹(Decapterus macrosoma),又名长身圆鲹,隶属于鲈形目、鲹科、圆鲹属,主要分布于中国南海、印度尼西亚、澳洲和日本南部沿海等地[1]。长体圆鲹在中国南海分布较广,是南海灯光围网渔业的主要捕捞对象,具有较高的经济价值[2-5]。目前,国内外学者关于长体圆鲹的研究主要集中在生长繁殖[6]和资源评估[7-8]方面,与种群遗传和分子标记相关的研究报道较少。微卫星标记仅见翟云等[9]开发蓝圆鲹微卫星标记中获得5个跨物种通用标记可于用长体圆鲹,并无专门针对长体圆鲹开发的微卫星标记。种群遗传信息的匮乏,将大大影响对其资源的评估和长期有效的管理。

    微卫星分子标记因是共显性标记,具有多态性高、变异性强、数据易统计等突出优点[10],广泛应用于海洋生物遗传结构及遗传多样性分析[11-12]。但由于微卫星标记通用性较差,常常具有极强的种属特异性。鱼类微卫星标记开发中多以二核苷酸重复为主[13-15],普遍认为它们具有较高的遗传变异[16],但是也有部分学者研究认为三、四核苷酸重复位点较二核苷酸重复具有更高的筛选效率和多态性[17-19]

    本研究通过RAD-Seq高通量测序方法开发长体圆鲹二、三核苷酸微卫星分子标记,并对测试群体进行多样性分析,同时比较二、三核苷酸的筛选效率和多态性差异,旨在为长体圆鲹种群遗传结构及遗传多样性分析提供技术基础,并为该资源的评估和管理提供帮助。

    长体圆鲹样品采集于中国南海中沙群岛东部海域,共35尾。剪取部分肌肉样品加入无水乙醇保存。每个样品剪取少量肌肉组织,使用海洋动物组织基因组DNA提取试剂盒(天根,北京) 提取基因组DNA,0.8%的琼脂糖凝胶电泳检测DNA提取质量,−20 ℃保存备用。

    使用HiSeq2000高通量测序仪(Illumina,USA) 对长体圆鲹基因组DNA进行RAD-seq (测序服务由广州基迪奥生物科技有限公司提供),经生物信息学搜索出微卫星位点[20]。使用Premier 5.0软件在重复单元侧翼序列上选择性设计出112条引物,主要参数为:G-C含量为40%~60%,引物长度为18~25 bp,退火温度为45~60 ℃,预期产物长度180~320 bp。送上海英潍捷基贸易有限公司合成引物。

    选取3个样本混合成的基因组DNA为模板,优化PCR反应条件,对引物进行首轮筛选,琼脂糖电泳检测是否能扩增出稳定且均一的目的片段。之后选取8尾个体的基因组DNA作为模板,使用三引物法[21],利用M13荧光接头引物进行PCR扩增,扩增产物送华大基因公司经毛细管电泳进行等位基因分型,检测引物是否具有多态性。PCR反应体系为15 μL,其中包括10×PCR Buffer 1.5 μL,2.5 mmol·L–1 MgCL2 1.2 μL,2 mmol·L–1 dNTPs 2 μL,M13正向引物(10 μmol·L–1) 0.2 μL,M13反向引物(10 μmol·L–1) 0.6 μL,M13通用荧光引物(10 μmol·L–1) 0.5 μL,Taq酶(5 U·μL–1) 0.15 μL,DNA模版1 μL,加双蒸水至15 μL。PCR扩增程序为:94 ℃预变性5 min;94 ℃变性45 s,55~60 ℃退火45 s,72 ℃延伸45 s,35个循环;94 ℃变性45 s,53 ℃退火45 s,72 ℃延伸45 s,8个循环;72 ℃延伸30 min。

    使用35尾长体圆鲹个体的基因组DNA为模板,对通过筛选的微卫星标记的种群遗传学特征进行评价。PCR反应体系和条件、等位基因分型方法如上。使用软件Genepop 4.0[22]对每个标记的种群遗传学特征值进行计算,包括等位基因数(Na)、表观杂合度(Ho)和期望杂合度(He),进行“哈迪-温伯格”平衡(HWE)检验和连锁不平衡检测,并对P值进行Bonferroni校正。使用Cervus 3.0.7[23]软件计算多态信息含量(PIC)。

    RAD-seq高通量测序共获得长体圆鲹基因组原始数据2.06 G,GC含量为41.43%,Q30达93.05%。说明测序结果质量较好,可用于后续分析。搜索后共获得微卫星序列58 180条,一至六核苷酸重复微卫星位点70 508个,其中二核苷酸重复微卫星位点最多(37 646个),占总数的53.39% (表1),说明二核苷酸重复为主要的微卫星类型。二核苷酸重复微卫星位点共有4种重复类型,4种类型重复微卫星数量相差较大,AC/GT类有29 754个,占二核苷酸重复的68.4%;AG/CT类有6 487个,占17.2%;AT/TA有1 340个,占3.6%;GC/CG仅有65个,占0.17%。

    表  1  长体圆鲹基因组中不同类型SSR统计
    Table  1.  Different types of SSR statistics in D. macrosoma genome
    重复单元
    repeat unit
    微卫星数量/个
    number of microsatellite
    占比/%
    ratio
    一核苷酸 mono-nucleotide 8 18411.61
    二核苷酸 di-nucleotide37 64653.39
    三核苷酸 tri-nucleotide13 96019.80
    四核苷酸 tetra-nucleotide 7 74110.98
    五核苷酸 penta-nucleotide 2 2553.20
    六核苷酸 hexa-nucleotide 7221.02
    合计 total70 508100.00
    下载: 导出CSV 
    | 显示表格

    选取112条二、三核苷酸重复序列设计引物,其中二核苷酸重复为81对,三核苷酸重复为31对。经过筛选后,共有27对引物通过筛选(表2),27对引物扩增的序列中18个位点为二核苷酸重复,重复次数为9~14次;8个位点为三核苷酸重复,重复次数为6~10次。二核苷酸重复位点检出效率为22.2%,三核苷酸重复位点检出效率为25.8%。

    表  2  27对长体圆鲹微卫星引物信息
    Table  2.  Information of 27 pairs of primers in D. macrosoma
    位点
    locus
    引物序列 (5'−3')
    primer sequence
    重复单元
    repeat motif
    退火温度/℃
    annealing temperature
    期望长度/bp
    allele size
    Dma03F:CCACGCCTATTGAGTTACAGA(CA)960186
    R:GAGCCAGTGGATGAACAGAGT
    Dma07F:GCCCCTGTGGGTGTGTGA(CA)960225
    R:GGGTGGTGGGTTCGGTTT
    Dma12F:GAACCAGTGCCTACAATAGA(AC)960243
    R:CTGCTCACGGTAAGTCCA
    Dma15F:ACAGGAAGGAACAGGACAG(TG)1055254
    R:TATTGAAGTGAAAAAGCCG
    Dma22F:CGCTGTTGAAATGAAGAAGA(GT)1060317
    R:AGTGATGTCGCCTCATAAAT
    Dma23F:AAACTGAGGGCGAGATAGAGG(AC)1055190
    R:CCACAGGCTGAGTAAACCAAC
    Dma26F:ATCCCATTCACCGACATAG(TG)1058258
    R:CTGTGGTATCGTTCCCTGT
    Dma28F:TGATTGGCTTCTACTCTGC(AC)1055281
    R:AGTGGCTTGTTTGACTCTTAT
    Dma36F:GGATGTAGTGAAGAGGGGAG(GT)11 55239
    R:CACAATCAGTGTTATGGCAG
    Dma38F:GCCAATAAAGGCAAACAGT(CA)1160227
    R:ATCCGAGACAAAGACATACAA
    Dma39F:AGTGTGCTGACTTTTCTCTG(CA)1155241
    R:TTATTGTTTGTTGTCTGGGT
    Dma45F:CTCCTTTTTCTTCTTCCTCT(CA)1160281
    R:CTACCTGCTCTTCAACTCAT
    Dma51F:TGACAGCCTCCACTACTCC(GA)1255225
    R:GCTAACCAGACACGCAAA
    Dma54F:AAAGCCCATCTGTCTCGT(GT)1260202
    R:TGTTTCAGTCCGTTCCTG
    Dma58F:TCAAGAGGGAGTGGGAGC(AC)1258279
    R:TCAAATGGGTGTTTAGCG
    Dma64F:GCTCAGACTGCGTGGACA(TG)1355314
    R:GCTGGTGAACAACAGGACA
    Dma72F:TTCCGCAGGCATAAAAAC(CT)1358301
    R:CCAAGGTCCGCTACACTA
    Dma76F:TTCTCGCTGACCTGCTTG(TG)1455253
    R:GCGTCCTCGTCGTCTTTC
    Dma81F:GAGACACGGTCAGAAAACA(TGC)660216
    R:GGAAGTAGGACTCTAGGGG
    Dma82F:CTGTCACTCCATTCCTATTCC(GTT)658244
    R:CCTACATTTGTGCTTTTGTTC
    Dma83F:CTCTAAAGCCGACCTAACC(CTT)658239
    R:TGTCTCAACACAGCGAAAC
    Dma84F:AAACTAACTCATCACCAG(TGT)655283
    R:AAACGACAGGAACTCAAT
    Dma85F:CTCACTTTGACCCAACCAG(AGG)655256
    R:CCTTTCACCGAGACACCAG
    Dma131F:TGCGGATGGGTGGTAGTGT(GGT)855208
    R:ATTGCTGGTAGTCGGTGGC
    Dma132F:CCCAGTGAGACCAGAACCA(GCT)855268
    R:GACCCGTAGACAGGAGAGT
    Dma135F:GTTGTTGTTTTTTTCCTT(GCA)955301
    R:CATCAGTCTGGCTTTATA
    Dma145F:ACGATACAGCAGCCGAAG(TCA)1060197
    R:AGTGATGTCGCCTCATAAAT
    下载: 导出CSV 
    | 显示表格

    使用1个采集自南海东南部海域的长体圆鲹群体对筛选合格的微卫星标记进行种群遗传学评价。所有27个标记在测试群体中共检测到285个等位基因,等位基因数为5~17,Ho为0.342 9~0.857 1,平均为0.631 7;He为0.538 3~0.911 8,平均为0.7968。PIC为0.497~0.886,平均为0.780 9 (表3),表明开发的微卫星位点具有较高的多态性。共有19个标记等位基因频率符合“哈迪-温伯格”平衡。连锁不平衡检测表明各位点间无连锁不平衡现象。

    表  3  长体圆鲹微卫星标记的种群遗传学特征
    Table  3.  Characteristics of microsatellite loci in D. macrosoma
    位点
    locus
    NNaHoHePHWEPIC
    Dma033580.857 10.790 90.042 00.746 0
    Dma073590.771 40.855 90.553 40.825 0
    Dma1234110.685 70.816 60.106 40.809 0
    Dma15*35140.542 90.911 80.000 00.890 0
    Dma22*32140.485 70.813 20.000 00.864 0
    Dma2334170.714 30.864 80.003 30.868 0
    Dma26*34140.428 60.869 10.000 00.870 0
    Dma2835110.742 90.837 70.035 30.803 0
    Dma363590.685 70.786 30.054 50.743 0
    Dma38*34120.628 60.851 20.000 00.849 0
    Dma39*33120.514 30.782 00.000 00.793 0
    Dma4534120.771 40.847 80.139 20.844 0
    Dma51*31120.485 70.784 50.000 00.859 0
    Dma5435150.771 40.900 60.139 00.878 0
    Dma5834120.771 40.845 60.449 70.843 0
    Dma64*31130.428 60.788 30.000 00.865 0
    Dma723580.628 60.713 90.155 70.659 0
    Dma7635120.685 70.908 10.003 60.886 0
    Dma813580.628 60.795 00.045 70.752 0
    Dma823550.485 70.538 30.023 60.497 0
    Dma83*3480.342 90.705 80.000 00.674 0
    Dma843570.542 90.704 80.005 90.649 0
    Dma853580.828 60.747 80.876 90.704 0
    Dma1313590.628 60.717 60.646 60.661 0
    Dma1323580.657 10.746 60.365 50.692 0
    Dma13534100.742 90.840 50.241 80.835 0
    Dma1453470.600 00.749 30.077 40.725 0
     注:N. 有效样品数;Na. 等位基因数;Ho. 表观杂合度;He. 期望杂合度;PHWE. “哈迪-温伯格”平衡显著性检验P值;PIC. 多态信息含量;*. 经Bonferroni校正后显著背离“哈迪-温伯格”平衡 (校正P<0.001 85)  Note: N. effective number of samples; Na. number of alleles; Ho. observed heterozygosity; He. expected heterozygosity; PHWE. Hardy–Weinberg probability test; PIC. polymorphism information content; *. significant deviation from HWE after Bonferroni's correction (adjusted P-value<0.001 85)
    下载: 导出CSV 
    | 显示表格

    传统微卫星标记开发方法耗时长、花费高、技术难度大。以磁珠富集法为例,标记开发过程中基因组DNA浓度、接头连接效率、富集过程中的杂交温度以及洗脱条件的控制等因素都会影响微卫星筛选的效率[24-25],且最终获得的有效微卫星序列仅几百条[26-27]。相比较而言,高通量测序技术开发微卫星标记,省略了建库、克隆、筛选等,只需提取基因组DNA测序,利用生物信息学手段可直接获取微卫星序列,通常是传统方法获得微卫星序列数目的几百倍[15,28-29],具有高效、便捷、准确的特点,能够满足短时间内大批量微卫星位点的开发需求,比如连锁图谱构建、QTL定位等[30-31]

    本次RAD-seq高通量测序共获得长体圆鲹基因组原始数据2.06 G,GC含量为41.43%,测序质量Q30达93.05%;共获得微卫星序列58 180条,一至六核苷酸重复微卫星位点70 508个。说明测序质量稳定高效,并获得了数量庞大、类型丰富的长体圆鲹微卫星序列,可用于后续长体圆鲹微卫星标记的大规模开发和相关遗传学研究。

    本次高通量测序结果表明在长体圆鲹微卫星位点中二核苷酸重复为主要重复类型,AC/GT类重复数量最为丰富,GC/CG重复较为少见。此结果与大量水产动物微卫星位点研究结果相一致[32-34],差异仅在于比例多少,以及除二核苷酸重复占主要地位外其他核苷酸重复的含量差异。熊良伟等[33]对中华鳑鲏(Rhodeus sinensis)微卫星的分析中,二核苷酸占总微卫星位点的53.59%,其次为单核苷酸重复,二核苷酸重复中AC/GT类占60.63%,GC/CG仅占0.32%。在裸体异鳔鳅鮀 (Xenophysogobio nudicorpa)中[32],二核苷酸重复占总微卫星位点比例高达83.15%,AC/GT类重复占49.36%,GC/CG重复仅有4个。

    多数鱼类开发的微卫星标记以二核苷酸重复为主,但研究表明,在人类基因组中三核苷酸重复序列与遗传疾病的发生有关,并且具有较高的多态性和遗传稳定性[35]。部分学者对三、四核苷酸重复微卫星标记的研究结果存在差异。房祖业等[28]对大刺鳅 (Mastacembelus armatus) 二、三、四核苷酸重复微卫星标记的筛选发现二核苷酸重复较三、四核苷酸重复具有更高的筛选效率和多态性;鲁翠云等[17]、谭照君等[18]、李文升等[19]的研究认为三、四核苷酸具有更高的多态性和分型效果。长体圆鲹二、三核苷酸的筛选效率分别为22.2%和29.0%,PIC分别为0.827 4和0.687 7 (表4)。就筛选效率而言,三核苷酸重复略高于二核苷酸重复,但二者相差不大。PIC为衡量种群遗传变异程度的重要指标[36],二核苷酸重复多态性明显高于三核苷酸重复。本文中长体圆鲹二核苷酸重复筛选效率低于三核苷酸重复,但多态性二核苷酸重复明显高于三核苷酸重复。因此,筛选效率和多态性的差异可能由种属差异或其他多种因素导致。

    表  4  长体圆鲹二、三核苷酸重复微卫星标记的比较
    Table  4.  Comparison on di- and trinucleotide-repeated microsatellite loci in D. macrosoma
    序列
    sequence
    引物数
    primer number
    重复次数
    repeat number
    筛选效率
    efficiency
    PIC
    二核苷酸重复
    di-nucleotide-repeated
    189~1422.2%0.827 4
    三核苷酸重复
    tri-nucleotide-repeated
    96~1029.0%0.687 7
    下载: 导出CSV 
    | 显示表格

    通过筛选的27对引物中18个位点为二核苷酸重复,重复次数为9~14次不等;9个位点为三核苷酸重复,重复次数为6~10次不等,符合Ellegren[37]提出的真核生物微卫星位点重复大部分在30次重复以下。但Ellegren[37]认为二核苷酸重复以15~19次为主,本文中高通量测序获得的二核苷酸重复主要在6~15次。基于Weber[38]的研究结果,重复次数高的微卫星在种群中表现出的多态性较高,龚小玲等[39]对澳洲鳗鲡 (Anguilla australis) 进行标记开发时发现,微卫星重复序列的重复次数过高会影响PCR效果,应选择居中的重复次数为宜。长体圆鲹二核苷酸重复PIC为0.827 4,具有较高多态性,表明选择6~15次的二核苷酸重复是合适的。

    群体杂合度的高低反映了群体在多个基因座上的遗传变异及群体遗传多样性丰富度[19]。本研究中长体圆鲹中沙群体的平均Ho为0.631 7,平均He为0.796 8,说明长体圆鲹该群体的遗传多样性较高。平均HoHe存在差异,说明存在杂合子缺失或者纯合子过剩的情况。PIC也是衡量群体遗传多样性的重要指数,Botstein等[36]认为基因标记PIC>0.5为高度多态位点,0.25<PIC<0.5为中度多态位点,PIC<0.25为低度多态性位点,通常不作为遗传多样性分析。本文中长体圆鲹位点除1个为中度多态外,其他位点均为高度多态位点。表明开发所得的长体圆鲹微卫星标记在中沙群体中具有较好的遗传稳定性和丰富的遗传多样性。

    在所有27个位点中有8个位点偏离了“哈迪-温伯格”平衡,这些位点不适合进一步的遗传分析。近亲杂交、无效等位基因、种群退化和自然选择等因素皆可能导致微卫星位点偏离HWE[15]

  • 图  1   纳米硒对低氧胁迫下中华绒螯蟹血淋巴耐低氧指标的影响 (N=6)

    注:柱上不同英文字母表示相同低氧胁迫时间下显著差异 (P<0.05);*. 与对照组差异显著 (P<0.05);后图同此。

    Figure  1.   Effects of nano-Se on hemolymph hypoxia tolerance indexes of E. sinensis under hypoxia stress (N=6)

    Note: Different lowercase letters on the bar indicate significant difference at the same hypoxia stress time (P<0.05); *. Significant difference compared with the control group (P<0.05); the same case in the following figures.

    图  2   纳米硒对低氧胁迫下中华绒螯蟹血淋巴血细胞数量的影响 (N=6)

    Figure  2.   Effects of nano-Se on hemolymph hemocyte count of E. sinensis under hypoxia stress (N=6)

    图  3   纳米硒对低氧胁迫下中华绒螯蟹不同组织中超氧化物歧化酶活性的影响 (N=6)

    Figure  3.   Effects of nano-Se on SOD activity in different tissues of E. sinensis under hypoxia stress (N=6)

    图  4   纳米硒对低氧胁迫下中华绒螯蟹不同组织中过氧化氢酶活性的影响 (N=6)

    Figure  4.   Effects of nano-Se on CAT activity in different tissues of E. sinensis under hypoxia stress (N=6)

    图  5   纳米硒对低氧胁迫下中华绒螯蟹不同组织中谷胱甘肽过氧化物酶活性的影响 (N=6)

    Figure  5.   Effects of nano-Se on GSH-Px activity in different tissues of E. sinensis under hypoxia stress (N=6)

    图  6   纳米硒对低氧胁迫下中华绒螯蟹不同组织中丙二醛浓度的影响 (N=6)

    Figure  6.   Effects of nano-Se on MDA concentration in different tissues of E. sinensis under hypoxia stress (N=6)

    表  1   基础饲料配方组成

    Table  1   Ingredients of composition of basal diets

    原料
    Ingredient
    质量分数
    Mass fraction/%
    鱼粉 Fish meal 17
    棉粕 Cotton seed meal 17
    菜粕 Rape seed meal 16
    次粉 Wheat flour 10.5
    豆粕 Soybean meal 10
    玉米 Corn 9
    米糠 Rice bran 5
    黏合剂 Adhesive 1
    血粉 Blood meal 3
    虾壳粉 Shrimp shell meal 3
    豆油+菜油 (1∶1) Soybean oil+ Rapeseed oil 2
    磷酸二氢钙 Ca(H2PO4)2 1.5
    沸石粉 Zeolite powder 2
    河蟹饲料添加剂 Crab feed additive 1
    蟹用多维 Crab vit premix 1
    蟹用多矿 Crab min premix 1
    注:①. 每100 g蟹用多维预混料中含:维生素E 2.0 g、维生素C 3.0 g、维生素A 0.6 g、维生素D3 0.08 g、维生素B1 0.07 g、维生素B2 0.14 g、维生素B3 0.28 g、维生素B5 0.01 g、维生素B6 0.08 g、维生素B7 0.05 g、维生素B11 0.02 g、维生素H 0.04 g、烟酸0.3 g、叶酸0.05 g、氯化胆碱0.5 g、泛酸钙0.25 g、生物素0.05 g、肌醇0.7 g;②. 每100 g蟹用多矿预混料中含:磷酸二氢钠3.5 g、磷酸二氢钾6.0 g、碳酸钙3.5 g、氯化钾0.6 g、七水合硫酸镁3.2 g、六水合氯化铝0.55 g、七水合硫酸锌0.157 g、柠檬酸铁0.019 g、四水合硫酸锰0.043 g、碘化钾0.016 g、氯化铜0.014 g、六水合氯化钴0.055 g、乳酸钙5.15 g。 Note: ①. Per 100 g of crab multi vitamin premix contains: ${\rm{V}}_{\rm{E}} $ 2.0 g , ${\rm{V}}_{\rm{C}} $ 3.0 g, ${\rm{V}}_{\rm{A}} $ 0.6 g, ${\rm{V}}_{{\rm{D}}_3}$ 0.08 g, ${\rm{V}}_{{\rm{B}}_1}$ 0.07 g, ${\rm{V}}_{{\rm{B}}_2}$ 0.14 g, ${\rm{V}}_{{\rm{B}}_3}$ 0.28 g, ${\rm{V}}_{{\rm{B}}_5}$ 0.01 g, ${\rm{V}}_{{\rm{B}}_6}$ 0.08 g, ${\rm{V}}_{{\rm{B}}_7}$ 0.05 g, ${\rm{V}}_{{\rm{B}}_{11}}$ 0.02 g, VH 0.04 g, niacin 0.3 g, folic acid 0.05 g, choline chloride 0.5 g, calcium pantothenate 0.25 g, biotin 0.05 g, inositol 0.7 g; ②. Per 100 g of crab multi mineral premix contains: NaH2PO4 3.5 g, KH2PO4 6.0 g, CaCO3 3.5 g, KCl 0.6 g, MgSO4·7H2O 3.2 g, AlCl3·6H2O 0.55 g, ZnSO4·7H2O 0.157 g, FeC6H5O7 0.019 g, MnSO4·4H2O 0.043 g, KI 0.016 g, CuCl2 0.014 g, CoCl2·6H2O 0.055 g, C6H10CaO6 5.15 g.
    下载: 导出CSV

    表  2   纳米硒对低氧胁迫下中华绒螯蟹死亡率的影响 (N=10)

    Table  2   Effects of nano-Se on mortality rate of E. sinensis under hypoxia stress (N=10)

    纳米硒添加水平
    Level of nano-Se/(mg·kg−1)
    死亡率
    Mortality rate/%
    免疫保护率
    Immune protection rate/%
    0 h 12 h 24 h 12 h 24 h
    0 0 12.66±3.33c 62.45±8.57c*
    0.1 0 6.25±1.50b 44.39±4.88b 50.63 28.92
    0.2 0 2.50±0.30a 25.62±3.33a 80.25 58.98
    0.4 0 12.34±2.05c 31.55±3.29b 2.53 49.48
    0.8 0 19.36±2.67d 62.66±6.32c −52.92 −0.34
    1.6 0 20.25±5.55d 87.73±10.34d −59.95 −40.48
    注:同列不同上标字母表示差异显著 (P<0.05);*. 与对照组 (0 mg·kg−1纳米硒低氧胁迫0 h组) 差异显著 (P<0.05);—. 无数据;后表同此。 Note: Different superscript letters within the same column indicate significant difference (P<0.05); *. Significant difference compared with the control group (0 mg·kg−1 nano-Se group under hypoxia stress for 0 h) (P<0.05); —. No data. The same case in the following tables.
    下载: 导出CSV

    表  3   纳米硒对低氧胁迫下嗜水气单胞菌致死率的影响 (N=10)

    Table  3   Effects of nano-Se on lethality of A. hydrophila under hypoxia stress (N=10)

    纳米硒添加水平
    Level of nano-Se/(mg·kg−1)
    嗜水气单胞菌致死率
    Lethality of A. hydrophila/%
    免疫保护率
    Immune protection rate/%
    0 h 12 h 24 h 12 h 24 h
    0 0 50.36±6.72c* 100±0c*
    0.1 0 25.22±3.51b 87.47±5.95b 49.92 12.53
    0.2 0 12.48±2.39a 56.82±7.31a 75.22 43.18
    0.4 0 25.78±3.64b 81.43±2.5b 48.81 18.57
    0.8 0 50.33±4.52c 100±0c 0.06 0
    1.6 0 75.29±6.15d 100±0c −49.5 0
    下载: 导出CSV
  • [1] 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2021中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2021: 27-46.
    [2]

    BAO J, LI X D, XING Y N, et al. Effects of hypoxia on immune responses and carbohydrate metabolism in the Chinese mitten crab, Eriocheir sinensis[J]. Aquac Res, 2020, 51(7): 2735-2744. doi: 10.1111/are.14612

    [3]

    GUO K, ZHAO Z G, LUO L, et al. Immune and intestinal microbiota responses to aerial exposure stress in Chinese mitten crab (Eriocheir sinensis)[J]. Aquaculture, 2021, 541: 736833. doi: 10.1016/j.aquaculture.2021.736833

    [4]

    GRAVINESE P M. The tolerance of juvenile stone crabs to hypoxia: size matters[J]. J Exp Mar Biol Ecol, 2020, 523: 151269. doi: 10.1016/j.jembe.2019.151269

    [5] 阮雯, 纪炜炜, 郑亮, 等. 鱼类低氧胁迫及营养调控和应对研究进展[J]. 海洋渔业, 2020, 42(6): 751. doi: 10.3969/j.issn.1004-2490.2020.06.011
    [6]

    ADENIRAN S O, ZHENG P, FENG R, et al. The antioxidant role of selenium via GPx1 and GPx4 in LPS-induced oxidative stress in bovine endometrial cells[J]. Biol Trace Elem Res, 2022, 200(3): 1140-1155. doi: 10.1007/s12011-021-02731-0

    [7]

    NKENGFACK G. Selenium and immunity[M]//MAHMOUDI M. Nutrition and immunity. Cham: Springer, 2019: 159-165.

    [8]

    YUAN L X, ZHANG R, MA X Z, et al. Selenium accumulation, antioxidant enzyme levels, and amino acids composition in Chinese mitten crab (Eriocheir sinensis) fed selenium-biofortified corn[J]. Nutrients, 2018, 10(3): 318. doi: 10.3390/nu10030318

    [9]

    WANG X D, SHEN Z H, WANG C L, et al. Dietary supplementation of selenium yeast enhances the antioxidant capacity and immune response of juvenile Eriocheir sinensis under nitrite stress[J]. Fish Shellfish Immunol, 2019, 87: 22-31. doi: 10.1016/j.fsi.2018.12.076

    [10]

    NEAMAT-ALLAH A N F, MAHMOUD E A, ABD EL HAKIM Y. Efficacy of dietary nano-selenium on growth, immune response, antioxidant, transcriptomic profile and resistance of Nile tilapia, Oreochromis niloticus against Streptococcus iniae infection[J]. Fish Shellfish Immunol, 2019, 94: 280-287. doi: 10.1016/j.fsi.2019.09.019

    [11] 侍苗苗, 秦粉菊, 袁林喜, 等. 纳米硒对中华绒螯蟹生长性能、硒含量和营养组成的影响[J]. 饲料工业, 2015, 36(10): 21-25. doi: 10.13302/j.cnki.fi.2015.10.006
    [12] 王璀红. 碘量法测定溶解氧[J]. 辽宁化工, 2012, 41(1): 107-108. doi: 10.3969/j.issn.1004-0935.2012.01.032
    [13]

    NICKERSON K W, van HOLDE K E. A comparison of molluscan and arthropod hemocyanin-I. Circular dichroism and absorption spectra[J]. Comp Biochem Phys B, 1971, 39(4): 855-872. doi: 10.1016/0305-0491(71)90109-X

    [14] 杨明, 孙盛明, 傅洪拓, 等. 低氧和复氧对日本沼虾抗氧化酶活力及组织结构的影响[J]. 中国水产科学, 2019, 26(3): 493-503.
    [15] 张静, 陈红莲, 鲍俊杰, 等. 水产养殖中嗜水气单胞菌拮抗菌的研究进展[J]. 江苏农业科学, 2020, 48(17): 21-33.
    [16]

    STRATEV D, ODEYEMI O A. An overview of motile Aeromonas septicaemia management[J]. Aquac Int, 2017, 25(3): 1095-1105. doi: 10.1007/s10499-016-0100-3

    [17] 谢丽玲, 赵水灵, 余飞, 等. 黄连素对3种水产动物致病菌的抑制作用研究[J]. 南方水产科学, 2013, 9(4): 45-49. doi: 10.3969/j.issn.2095-0780.2013.04.008
    [18] 程超, 肖敏, 李菁, 等. 嗜水气单胞菌刺激对中华绒螯蟹免疫的影响[J]. 水产科学, 2020, 39(4): 465-475.
    [19]

    KONG Y Q, DING Z L, ZHANG Y X, et al. Dietary selenium requirement of juvenile oriental river prawn Macrobrachium nipponense[J]. Aquaculture, 2017, 476: 72-78. doi: 10.1016/j.aquaculture.2017.04.010

    [20]

    HAUTON C. The scope of the crustacean immune system for disease control[J]. J Invertebr Pathol, 2012, 110(2): 251-260. doi: 10.1016/j.jip.2012.03.005

    [21]

    LIU S, ZHENG S C, LI Y L, et al. Hemocyte-mediated phagocytosis in crustaceans[J]. Front Immunol, 2020, 11: 268. doi: 10.3389/fimmu.2020.00268

    [22]

    MITTA G, VANDENBULCKE F, ROCH P. Original involvement of antimicrobial peptides in mussel innate immunity[J]. FEBS Lett, 2000, 486(3): 185-190. doi: 10.1016/S0014-5793(00)02192-X

    [23] 洪宇航, 杨筱珍, 成永旭, 等. 中华绒螯蟹的血细胞组成、分类及免疫学功能[J]. 水产学报, 2017, 41(8): 1213-1222.
    [24]

    SIVAKUMAR M R, DENIS M, SIVAKUMAR S, et al. Agglutination of plasma, hemocyanin, and separated hemocyanin from the hemolymph of the freshwater prawn Macrobrachium rosenbergii (de Man, 1879) (Decapoda: Caridea: Palaemonidae)[J]. J Crust Biol, 2020, 40(3): 309-315. doi: 10.1093/jcbiol/ruaa016

    [25]

    XU Z N, LIU A, LI S K, et al. Hepatopancreas immune response during molt cycle in the mud crab, Scylla paramamosain[J]. Sci Rep, 2020, 10(1): 1-14. doi: 10.1038/s41598-019-56847-4

    [26]

    le MOULLAC G, SOYEZ C, SAULNIER D, et al. Effect of hypoxic stress on the immune response and the resistance to vibriosis of the shrimp Penaeus stylirostris[J]. Fish Shellfish Immunol, 1998, 8(8): 621-629. doi: 10.1006/fsim.1998.0166

    [27]

    SONG Y M, WU M Y, PANG Y Y, et al. Effects of melatonin feed on the changes of hemolymph immune parameters, antioxidant capacity, and mitochondrial functions in Chinese mitten crab (Eriocheir sinensis) caused by acute hypoxia[J]. Aquaculture, 2021, 535: 736374. doi: 10.1016/j.aquaculture.2021.736374

    [28]

    WANG J, XU Z, HE J P. The role of HIF-1α in the energy metabolism and immune responses of hypoxic Scylla paramamosain[J]. Aquac Rep, 2021, 20: 100740. doi: 10.1016/j.aqrep.2021.100740

    [29] 李彦红, 张飞飞, 黄丽娟, 等. 纳米硒对齐口裂腹鱼生长、肌肉成分、血清生化及抗氧化指标的影响[J]. 中国水产科学, 2020, 27(6): 682-691.
    [30]

    LI Y H, WEI L, CAO J R, et al. Oxidative stress, DNA damage and antioxidant enzyme activities in the Pacific white shrimp (Litopenaeus vannamei) when exposed to hypoxia and reoxygenation[J]. Chemosphere, 2016, 144: 234-240. doi: 10.1016/j.chemosphere.2015.08.051

    [31]

    STOREY K B. Oxidative stress: animal adaptations in nature[J]. Braz J Med Biol Res, 1996, 29(12): 1715-1733.

    [32]

    LESSER M P. Oxidative stress in tropical marine ecosystems[M]//ABELE D. Oxidative stress in aquatic ecosystems. Chichester: John Wiley & Sons Ltd. , 2011: 7-19.

    [33] 虞为, 杨育凯, 林黑着, 等. 牛磺酸对花鲈生长性能、消化酶活性、抗氧化能力及免疫指标的影响[J]. 南方水产科学, 2021, 17(2): 78-86. doi: 10.12131/20200223
    [34] 曾祥兵, 董宏标, 韦政坤, 等. 鸡内金多糖对尖吻鲈幼鱼生长、消化、肠道抗氧化能力和血清生化指标的影响[J]. 南方水产科学, 2021, 17(4): 49-57. doi: 10.12131/20210028
    [35]

    NUGROHO R A, FOTEDAR R. Comparing the effects of dietary selenium and mannan oligosaccharide supplementation on the growth, immune function, and antioxidant enzyme activity in the cultured marron Cherax cainii (Austin, 2002)[J]. Aquac Int, 2014, 22(2): 585-596. doi: 10.1007/s10499-013-9682-1

    [36]

    LIU Z M, ZHU X L, LU J, et al. Effect of high temperature stress on heat shock protein expression and antioxidant enzyme activity of two morphs of the mud crab Scylla paramamosain[J]. Comp Biochem Phys A, 2018, 223: 10-17. doi: 10.1016/j.cbpa.2018.04.016

    [37]

    HONG Y H, HUANG Y, YAN G W, et al. Antioxidative status, immunological responses, and heat shock protein expression in hepatopancreas of Chinese mitten crab, Eriocheir sinensis under the exposure of glyphosate[J]. Fish Shellfish Immunol, 2019, 86: 840-845. doi: 10.1016/j.fsi.2018.12.020

    [38] 管敏, 张德志, 唐大明. 慢性氨氮胁迫对史氏鲟幼鱼生长及其肝脏抗氧化、免疫指标的影响[J]. 南方水产科学, 2020, 16(2): 36-42. doi: 10.12131/20190191
    [39] 谭连杰, 林黑着, 黄忠, 等. 当归多糖对卵形鲳鲹生长性能、抗氧化能力、血清免疫和血清生化指标的影响[J]. 南方水产科学, 2018, 14(4): 72-79. doi: 10.3969/j.issn.2095-0780.2018.04.009
    [40]

    de OLIVEIRA U O, da ROSA ARAÚJO A S, BELLÓ-KLEIN A, et al. Effects of environmental anoxia and different periods of reoxygenation on oxidative balance in gills of the estuarine crab Chasmagnathus granulata[J]. Comp Biochem Phys B, 2005, 140(1): 51-57. doi: 10.1016/j.cbpc.2004.09.026

    [41] 管越强, 李利, 王慧春, 等. 低氧胁迫对日本沼虾呼吸代谢和抗氧化能力的影响[J]. 河北大学学报(自然科学版), 2010, 30(3): 301-306.
    [42]

    NAM S E, HAQUE M N, LEE J S, et al. Prolonged exposure to hypoxia inhibits the growth of Pacific abalone by modulating innate immunity and oxidative status[J]. Aquat Toxicol, 2020, 227: 105596. doi: 10.1016/j.aquatox.2020.105596

    [43]

    BUNDGAARD A, RUHR I M, FAGO A, et al. Metabolic adaptations to anoxia and reoxygenation: new lessons from freshwater turtles and crucian carp[J]. Curr Opin Endocr Metab Res, 2020, 11: 55-64. doi: 10.1016/j.coemr.2020.01.002

    [44]

    WANG H L, ZHANG J S, YU H Q. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice[J]. Free Radic Biol Med, 2007, 42(10): 1524-1533. doi: 10.1016/j.freeradbiomed.2007.02.013

    [45] 徐铭, 朱丹丹. 硒与动物免疫功能的关系[J]. 畜牧兽医科技信息, 2013(3): 16-17.
    [46] 赵亚伟, 汤加勇, 贾勇, 等. 不同硒源对肉鸡生长性能、血清和肌肉硒含量、抗氧化能力及肉品质的影响[J]. 动物营养学报, 2021, 33(4): 2024-2032. doi: 10.3969/j.issn.1006-267x.2021.04.022
    [47]

    BAI K K, HONG B H, HUANG W W, et al. Selenium-nanoparticles-loaded chitosan/chitooligosaccharide microparticles and their antioxidant potential: a chemical and in vivo investigation[J]. Pharmaceutics, 2020, 12(1): 43. doi: 10.3390/pharmaceutics12010043

    [48] 黄小红, 曹岩, 江俊勇, 等. 饲料中添加纳米硒对草鱼生长性能、免疫器官指数和抗氧化性能的影响[J]. 中国饲料, 2017(16): 30-34.
  • 期刊类型引用(4)

    1. 袁太平,廖宇琦,黄小华,胡昱,陶启友,李根,庞国良. 深水网箱网衣清洗装备关键部件设计及试验. 南方水产科学. 2024(01): 25-33 . 本站查看
    2. 魏盛军,蔡文鸿,丁兰,张哲,张艺,潘柏霖,陈思源,杨章武,魏观渊,林元俊,郑国富. 福建海上养殖设施污损生物处理方式现状调查. 渔业研究. 2023(02): 147-154 . 百度学术
    3. 黄小华,庞国良,袁太平,胡昱,王绍敏,郭根喜,陶启友. 我国深远海网箱养殖工程与装备技术研究综述. 渔业科学进展. 2022(06): 121-131 . 百度学术
    4. 廖宇琦,袁太平,胡昱,王绍敏,陶启友,黄小华. 转盘流道结构对网箱清洗装备喷嘴流场特性的影响. 渔业现代化. 2021(06): 9-18 . 百度学术

    其他类型引用(3)

图(6)  /  表(3)
计量
  • 文章访问数:  569
  • HTML全文浏览量:  252
  • PDF下载量:  63
  • 被引次数: 7
出版历程
  • 收稿日期:  2022-04-18
  • 修回日期:  2022-06-05
  • 录用日期:  2022-06-13
  • 网络出版日期:  2022-06-23
  • 刊出日期:  2022-12-04

目录

/

返回文章
返回