ZHAO Chaoping, GUO Huayang, ZHANG Jian, ZHU Kecheng, GUO Liang, ZHANG Nan, LIU Baosuo, YANG Jingwen, ZHANG Dianchang. Molecular characteristics and expression analysis of AQP1a from Trachinotus ovatus under acute salinity stress[J]. South China Fisheries Science, 2018, 14(4): 56-65. DOI: 10.3969/j.issn.2095-0780.2018.04.007
Citation: ZHAO Chaoping, GUO Huayang, ZHANG Jian, ZHU Kecheng, GUO Liang, ZHANG Nan, LIU Baosuo, YANG Jingwen, ZHANG Dianchang. Molecular characteristics and expression analysis of AQP1a from Trachinotus ovatus under acute salinity stress[J]. South China Fisheries Science, 2018, 14(4): 56-65. DOI: 10.3969/j.issn.2095-0780.2018.04.007

Molecular characteristics and expression analysis of AQP1a from Trachinotus ovatus under acute salinity stress

More Information
  • Received Date: March 04, 2018
  • Revised Date: March 28, 2018
  • Available Online: December 04, 2018
  • Aquaporin, a superfamily of internal membrane proteins that mediate transmembrane transport of water molecules, plays an important role in osmotic adjustment. AQP1a gene was obtained in order to study the role of AQP1a in osmoregulation of Trachinotus ovatus under acute salinity stress. The sequence of AQP1a gene was 1 078 bp with an open reading frame of 786 bp encoding 261 amino acids. The structural analysis shows that it has the structural characteristics of MIP family-specific sequence (HINPAVTLG) and two asparagine-proline-alanine (NPA) motifs. The qRT-PCR results show that AQP1a was distributed in the 11 tested tissues, highest in gonads and then in gill, intestine and liver, lowest in muscle. Under acute salinity stress, after being transfered to fresh water, the expression of AQP1a in gill increased at 4th hour, while there was no significant change in the expression in kidney and intestine. After being transfered to 10‰ and 20‰ salinity seawater, the expression of AQP1a in gill increased significantly at 2nd and 4th hour, and then decreased gradually. When being transferred to 10‰ salinity seawater, the expression of AQP1a in intestine increased. In kidney, the expression of AQP1a first increased and then decreased. When being transferred to 20‰ salinity seawater, the expression of AQP1a in intestine only increased significantly at 4th, 8th and 48th hour. In kidney, the expression of AQP1a reached the maximum at 12th hour. In 40‰ salinity seawater, the expression of AQP1a in gill decreased significantly. On the contrary, the expression of AQP1a in kidney and intestine were significantly up-regulated. The results reveal that the specificity of AQP1a functions in different tissues and plays an important role in T.ovatus salinity adaptation.
  • [1]
    AN K W, KIM N N, CHOI C Y. Cloning and expression of aquaporin 1 and arginine vasotocin receptor mRNA from the black porgy, Acanthopagrus schlegeli: effect of freshwater acclimation[J]. Fish Physiol Biochem, 2008, 34(2): 185-194.
    [2]
    CHNG Y R, ONG J L, CHING B, et al. Molecular characterization of aquaporin 1 and aquaporin 3 from the gills of the African lungfish, Protopterus annectens, and changes in their branchial mRNA expression levels and protein abundance during three phases of aestivation[J]. Front Physiol, 2016, 7: 532.
    [3]
    ABASCAL F, IRISARRI I, ZARDOYA R. Diversity and evolution of membrane intrinsic proteins[J]. Biochim Biophys Acta, 2014, 1840(5): 1468-1481.
    [4]
    FINN R N, CERDÀ J. Evolution and functional diversity of aquaporins[J]. Biol Bull, 2015, 229(1): 6-23.
    [5]
    AGRE P, SASAKI S, CHRISPEELS M J. Aquaporins: a family of water channel proteins[J]. Am J Physiol, 1993, 265(3 Pt 2): F461.
    [6]
    TINGAUD-SEQUEIRA A, CHAUVIGNÉ F, FABRA M, et al. Structural and functional divergence of two fish aquaporin-1 water channels following teleost-specific gene duplication[J]. BMC Evol Biol, 2008, 8(1): 259.
    [7]
    CHEN L M, ZHAO J, MUSA-AZIZ R, et al. Cloning and characterization of a zebrafish homologue of human AQP1: a bifunctional water and gas channel[J]. Am J Physiol Regul Integr Comp Physiol, 2010, 299(5): R1163-R1174.
    [8]
    DEANE E E, LUK J C Y, WOO N Y S. Aquaporin 1a expression in gill, intestine, and kidney of the euryhaline silver sea bream[J]. Front Physiol, 2011, 2: 39.
    [9]
    GUO H, WEI M, LIU Y, et al. Molecular cloning and expression analysis of the aqp1aa gene in half-smooth tongue sole (Cynoglossus semilaevis)[J]. PLoS One, 2017, 12(4): e175033.
    [10]
    TIPSMARK C K, SØRENSEN K J, MADSEN S S. Aquaporin expression dynamics in osmoregulatory tissues of Atlantic salmon during smoltification and seawater acclimation[J]. J Exp Biol, 2010, 213(3): 368-379.
    [11]
    MARTINEZ A S, CUTLER C P, WILSON G D, et al. Regulation of expression of two aquaporin homologs in the intestine of the European eel: effects of seawater acclimation and cortisol treatment[J]. Am J Physiol Regul Integr Comp Physiol, 2005, 288(6): R1733-R1743.
    [12]
    JEONG S Y, KIM J H, LEE W O, et al. Salinity changes in the anadromous river pufferfish, Takifugu obscurus, mediate gene regulation[J]. Fish Physiol Biochem, 2014, 40(1): 205-219.
    [13]
    KIM Y K, LEE S Y, KIM B S, et al. Isolation and mRNA expression analysis of aquaporin isoforms in marine medaka Oryzias dancena, a euryhaline teleost[J]. Comp Biochem Physiol A, 2014, 171(5): 1-8.
    [14]
    IP Y K, SOH M M, CHEN X L, et al. Molecular characterization of branchial aquaporin 1aa and effects of seawater acclimation, emersion or ammonia exposure on its mRNA expression in the gills, gut, kidney and skin of the freshwater climbing perch, Anabas testudineus[J]. PLoS One, 2013, 8(4): e61163.
    [15]
    GIFFARD-MENA I, BOULO V, AUJOULAT F, et al. Aquaporin molecular characterization in the sea-bass (Dicentrarchus labrax): the effect of salinity on AQP1 and AQP3 expression[J]. Comp Biochem Physiol A, 2007, 148(2): 430-444.
    [16]
    于文博, 朱克诚, 郭华阳, 等. 卵形鲳鲹MHCβ基因的克隆与表达分析[J]. 南方水产科学, 2017, 13(4): 69-79.
    [17]
    GEYER R R, MUSA-AZIZ R, QIN X, et al. Relative CO(2)/NH(3) selectivity's of mammalian aquaporins 0-9[J]. Am J Physiol Cell Physiol, 2013, 304(10): C985-C994.
    [18]
    FINN R N, CHAUVIGNÉ F, HLIDBERG J B, et al. The lineage-specific evolution of aquaporin gene clusters facilitated tetrapod terrestrial adaptation[J]. PLoS One, 2014, 9(11): e113686.
    [19]
    KONG Y, MA J. Dynamic mechanisms of the membrane water channel aquaporin-1(AQP1)[J]. Proc Natl Acad Sci USA, 2001, 98(25): 14345-14349.
    [20]
    FUJIYOSHI Y, MITSUOKA K, de GROOT B L, et al. Structure and function of water channels[J]. Curr Opin Struct Biol, 2002, 12(4): 509-515.
    [21]
    De GROOT B L, GRUBMÜLLER H. Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF[J]. Science, 2001, 294(5550): 2353-2357.
    [22]
    BEITZ E, WU B, HOLM L M, et al. Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons[J]. Proc Natl Acad Sci USA, 2006, 103(2): 269-274.
    [23]
    姜勇, 麻彤辉. NPA motif在水通道蛋白AQP1表达和转水功能中的重要性[J]. 科学通报, 2007, 52(4): 426-431.
    [24]
    WALZ T, HIRAI T, MURATA K, et al. The three-dimensional structure of aquaporin-1[J]. Nature, 1997, 387(6633): 624-627.
    [25]
    丁炜东. 黄鳝性别分化相关候选基因的筛选及相关功能研究[D]. 南京: 南京农业大学, 2016: 76-83
    [26]
    姚小皓, 李学军. 水孔蛋白1的结构与功能[J]. 生理科学进展, 2000, 31(4): 345-348.
    [27]
    BOJ M, CHAUVIGNÃ F, ZAPATER C, et al. Gonadotropin-activated androgen-dependent and independent pathways regulate aquaporin expression during teleost (Sparus aurata) spermatogenesis[J]. PLoS One, 2015, 10(11): e0142512.
    [28]
    AOKI M, KANEKO T, KATOH F, et al. Intestinal water absorption through aquaporin 1 expressed in the apical membrane of mucosal epithelial cells in seawater-adapted Japanese eel[J]. J Exp Biol, 2003, 206(19): 3495-3505.
    [29]
    丁炜东, 曹丽萍, 曹哲明, 等. 黄鳝AQP1 cDNA的克隆与表达分析[J]. 华北农学报, 2012, 27(S1): 6-11.
    [30]
    SANG Y L, NAM Y K, YI K K. Characterization and expression profiles of aquaporins (AQPs) 1a and 3a in mud loach Misgurnus mizolepis after experimental challenges[J]. Fish Aquat Sci, 2017, 20(1): 23.
    [31]
    王美垚, 杨健, 徐跑, 等. 刀鲚水通道蛋白1的分子克隆及高盐作用下的表达分析[J]. 中国水产科学, 2017, 24(3): 449-458.
  • Related Articles

    [1]REN Xiaoyao, TANG Baojun, ZHENG Hanfeng, LIU Yujia, WEI Tao. Effects of acute hypoxia stress on respiratory metabolism and related gene expression of juvenile Babylonia areolate[J]. South China Fisheries Science, 2025, 21(2): 149-156. DOI: 10.12131/20240205
    [2]XING Yifu, DUAN Yafei, WEI Zhengkun, ZHU Xuanyi, HUANG Jianhua, ZHANG Jiasong. Effects of nitrite and microplastic stress on immune, detoxification metabolism and osmoregulation-related indicators in gills of Litopenaeus vannamei[J]. South China Fisheries Science, 2023, 19(2): 70-77. DOI: 10.12131/20220176
    [3]LIU Qiqi, WEN Jiufu, OU Youjun, LI Jia′er, ZHOU Hui, TANG Qingliang. Effects of acute handling stress on liver tissue and oxidative stress of juvenile Eleutheronema tetradactylum[J]. South China Fisheries Science, 2017, 13(5): 103-109. DOI: 10.3969/j.issn.2095-0780.2017.05.014
    [4]CHEN Shixi, WANG Pengfei, OU Youjun, LI Jia′er, WEN Jiufu, WANG Wen, XIE Mujiao. Acute and chronic hypoxia effect on gills of golden pompano (Trachinotus ovatus)[J]. South China Fisheries Science, 2017, 13(1): 124-130. DOI: 10.3969/j.issn.2095-0780.2017.01.016
    [5]HU Jing, YE Le, WU Kaichang, WANG Yu. Effect of acute salinity stress on serum cortisol and activity of Na+ -K+ -ATPase of juvinile Amphiprion clarkii[J]. South China Fisheries Science, 2016, 12(2): 116-120. DOI: 10.3969/j.issn.2095-0780.2016.02.017
    [6]GAO Quanxin, XIE Mingmei, PENG Shiming, ZHANG Chenjie, SHI Zhaohong. Effect of acute temperature stress on metabolic enzymes, ion enzymes and concentration of ion in serum of juvenile Pampus argenteus[J]. South China Fisheries Science, 2016, 12(2): 59-66. DOI: 10.3969/j.issn.2095-0780.2016.02.009
    [7]HU Jing, WU Kaichang, YE Le, WANG Yu. Effect of acute salinity stress on catalase of juvinile Amphiprion clarkii[J]. South China Fisheries Science, 2015, 11(6): 73-78. DOI: 10.3969/j.issn.2095-0780.2015.06.010
    [8]CAI Xingyuan, ZHANG Xiumei, TIAN Lu, ZHANG Peidong. Effect of salinity stress on hemolymph osmolality and gill Na+/K+-ATPase activity of juvenile ark shell (Anadara broughtonii)[J]. South China Fisheries Science, 2015, 11(2): 12-19. DOI: 10.3969/j.issn.2095-0780.2015.02.002
    [9]SHI Shaokun, WANG Ruixuan, WANG Jiangyong, JIANG Jingzhe, LIU Guangfeng, YANG Rui. Effects of salinity stress on immune factors of Crassostrea hongkongensis[J]. South China Fisheries Science, 2013, 9(3): 26-30. DOI: 10.3969/j.issn.2095-0780.2013.03.005
    [10]TANG Xia, HUANG Guoqiang, LI Jie, ZHANG Xiumei. Effects of low salinity stress on growth of juvenileParalichthys olivaceus[J]. South China Fisheries Science, 2012, 8(3): 10-16. DOI: 10.3969/j.issn.2095-0780.2012.03.002
  • Cited by

    Periodical cited type(9)

    1. 姚紫荆,杨晓明,吴峰,田思泉. 基于参数最优地理探测器的南太平洋长鳍金枪鱼渔业资源分布驱动力研究. 海洋渔业. 2025(02): 153-162 .
    2. 张鸿霖,马有成,宋厚成,张健,曾志坚. 基于结构方程模型研究环境因子对毛里塔尼亚双拖鲣CPUE的影响. 中国水产科学. 2024(04): 465-475 .
    3. 王月,杨晓明,朱江峰. 中西太平洋自由群鲣资源丰度序列的振荡模态分析. 海洋渔业. 2024(03): 266-274 .
    4. 刘志强,郭绍健,王禹程,周成,吴峰,万荣. 中西太平洋金枪鱼延绳钓钓钩深度分布及其影响因素. 上海海洋大学学报. 2024(04): 1020-1030 .
    5. 范江涛,冯志萍,余为,马胜伟,陈新军. 南海鸢乌贼栖息地模型优化及季节性差异分析. 海洋湖沼通报(中英文). 2024(05): 111-120 .
    6. 杨诗玉,冯佶,李亚楠,朱江峰. 基于气候变化因子的印度洋长鳍金枪鱼资源评估. 南方水产科学. 2024(06): 84-94 . 本站查看
    7. 何露雪,付东洋,李忠炉,王焕,孙琰,刘贝,余果. 南海西北部蓝圆鲹时空分布及其与环境因子的关系. 渔业科学进展. 2023(01): 24-34 .
    8. 王啸,刘文俊,张健. 基于ARIMA的海洋尼诺指数对中西太平洋黄鳍金枪鱼年际CPUE的影响. 南方水产科学. 2023(04): 10-20 . 本站查看
    9. 郑好好,杨晓明,朱江峰. 基于多尺度地理加权回归模型的中西太平洋围网鲣渔获率环境影响机制研究. 南方水产科学. 2023(05): 1-10 . 本站查看

    Other cited types(3)

Catalog

    Article views (3513) PDF downloads (159) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return