REN Xiaoyao, TANG Baojun, ZHENG Hanfeng, LIU Yujia, WEI Tao. Effects of acute hypoxia stress on respiratory metabolism and related gene expression of juvenile Babylonia areolate[J]. South China Fisheries Science. DOI: 10.12131/20240205
Citation: REN Xiaoyao, TANG Baojun, ZHENG Hanfeng, LIU Yujia, WEI Tao. Effects of acute hypoxia stress on respiratory metabolism and related gene expression of juvenile Babylonia areolate[J]. South China Fisheries Science. DOI: 10.12131/20240205

Effects of acute hypoxia stress on respiratory metabolism and related gene expression of juvenile Babylonia areolate

More Information
  • Received Date: August 31, 2024
  • Revised Date: December 31, 2024
  • Accepted Date: January 17, 2025
  • Available Online: February 18, 2025
  • Babylonia areolate is vulnerable to hypoxic stress during aquaculture and transportation. To evaluate the effects of hypoxia stress on its metabolism and immune function, we measured the oxygen consumption rate and ammonia excretion rate of juveniles, and analyzed the gene expression levels of lactate dehydrogenase (LDH), pyruvate kinase (PK), superoxide dismutase (SOD), acid phosphatase (ACP) and alkaline phosphatase (AKP) after the dissolved oxygen (DO) concentration decreased to 6, 4, 2, 1and 0.5 mg·L−1, respectively. The results show that with the decline of DO level, the oxygen consumption rate of B. areolate decreased significantly (p<0.05), and the ammonia excretion rate first significantly increased and then significantly decreased (p<0.05). LDH activity was significantly lower than that of the control group (p<0.05), but significantly higher at 1 mg·L−1 (p<0.05); PK activity was significantly lower than that of the control group (p<0.05), but significantly higher at 0.5 mg·L−1 (p<0.05); SOD activity was significantly lower than that of the control group (p<0.05); the activities of ACP and AKP were significantly lower and then increased, and significantly higher than the control at 1 and 0.5 mg·L−1, respectively (p<0.05). Compared with the control group, the expression level of LDH gene decreased significantly (p<0.05) after the DO level decreased to 4 mg·L−1, and that of PK gene increased significantly (p<0.05) after the DO level decreased to 1 mg·L−1; the SOD gene expression was significantly down-regulated (p<0.05) after the DO level decreased to 0.5 mg·L−1; the ACP and AKP gene expression was significantly down-regulated (p<0.05). The results indicate that B. areolate can respond to hypoxic stress by decreasing metabolic rate and regulating metabolism, immune enzyme activity and gene expression.

  • [1]
    顾孝连, 徐兆礼. 河口及近岸海域低氧环境对水生动物的影响[J]. 海洋渔业, 2009, 31(4): 426-437. doi: 10.3969/j.issn.1004-2490.2009.04.013
    [2]
    NEWELL R I E. Ecosystem influences of natural and cultivated populations of suspension feeding bivalve molluscs: a review[J]. J Shellfish Res, 2004, 23(1): 51-61.
    [3]
    李峤. 经济贝类对低氧耐受性的研究: 以菲律宾蛤仔和栉孔扇贝为例[D]. 北京: 中国科学院大学, 2019: 6-7.
    [4]
    ARTIGAUD S, LACROIX C, PICHEREAU V, et al. Respiratory response to combined heat and hypoxia in the marine bivalves Pecten maximus and Mytilus spp.[J]. Comp Biochem Physiol A, 2014, 175: 135-140. doi: 10.1016/j.cbpa.2014.06.005
    [5]
    PORTER E T, BREITBURG D L. Eastern oyster, Crassostrea virginica, valve gape behavior under diel-cycling hypoxia[J]. Mar Biol, 2016, 163(10): 1-12.
    [6]
    TANG B J, RIISGÅRD H U. Relationship between oxygen concentration, respiration and filtration rate in blue mussel Mytilus edulis[J]. J Oceanol Limnol, 2018, 36(2): 395-404. doi: 10.1007/s00343-018-6244-4
    [7]
    江天棋, 张扬, 姜亚洲, 等. 不同溶解氧水平下厚壳贻贝的贝壳开放行为和呼吸代谢[J]. 中国水产科学, 2021, 28(10): 1329-1336. doi: 10.12264/JFSC2021-0165
    [8]
    LARADE K, STOREY K B. A profile of the metabolic responses to anoxia in marine invertebrates[J]. Cell Mol Resp Stress, 2002, 3: 27-46.
    [9]
    井浩. 低氧和高温胁迫对菲律宾蛤仔的组织结构、基因表达及能量代谢的影响研究[D]. 上海: 上海海洋大学, 2023: 20-21.
    [10]
    宋银都, 曾萌冬, 周昊天, 等. 不同溶解氧水平对鳜呼吸代谢酶及其基因表达量的影响[J]. 水产科学, 2022, 41(3): 438-444.
    [11]
    CHEN J Y, HUANG J, PENG J Q, et al. Effects of hypoxic stress on the digestion, energy metabolism, oxidative stress regulation, and immune function of the pearl oyster (Pinctada fucata martensii)[J]. Aquac Rep, 2022, 25: 101246. doi: 10.1016/j.aqrep.2022.101246
    [12]
    刘凯凯, 唐君玮, 袁廷柱, 等. 缺氧胁迫及对贝类免疫系统的影响[J]. 广西科学院学报, 2020, 36(2): 124-130.
    [13]
    王筱, 冼健安, 张秀霞, 等. 方斑东风螺人工养殖、环境生理和营养需求研究进展[J]. 中国饲料, 2024(3): 83-88, 117.
    [14]
    CHAITANAWISUTI N, SANTHAWEESUK W, KRITSANAPUNTU S. Performance of the seaweeds Gracilaria salicornia and Caulerpa lentillifera as biofilters in a hatchery scale recirculating aquaculture system for juvenile spotted babylons (Babylonia areolata)[J]. Aquac Int, 2011, 19(6): 1139-1150. doi: 10.1007/s10499-011-9429-9
    [15]
    黄瑞, 黄标武, 汤文杰, 等. 方斑东风螺的耗氧率及饲养水中溶氧变化的初步研究[J]. 福建水产, 2010(4): 21-24. doi: 10.3969/j.issn.1006-5601.2010.04.005
    [16]
    胡兰. 动物生物化学[M]. 北京: 中国农业大学出版社, 2007: 127-128.
    [17]
    WINKLE W, MANGUM C. Oxyconformers and oxyregulators: a quantitative index[J]. J Exp Mar Biol Ecol, 1975, 17(2): 103-110. doi: 10.1016/0022-0981(75)90025-8
    [18]
    LUCAS A, BENINGER P G. The use of physiological condition indices in marine bivalve aquaculture[J]. Aquaculture, 1985, 44(3): 187-200. doi: 10.1016/0044-8486(85)90243-1
    [19]
    马元, 张兴志, 何苹萍, 等. 低氧胁迫对香港牡蛎摄食和代谢的影响[J]. 广东海洋大学学报, 2022, 42(3): 127-133. doi: 10.3969/j.issn.1673-9159.2022.03.017
    [20]
    李昂, 石雯静, 赵晟. 低氧胁迫对近江牡蛎生理能量的影响[J]. 安徽农业科学, 2023, 51(12): 74-77, 81. doi: 10.3969/j.issn.0517-6611.2023.12.016
    [21]
    LI Q, SUN S, ZHANG F, et al. Effects of hypoxia on survival, behavior, metabolism and cellular damage of Manila clam (Ruditapes philippinarum)[J]. PLoS One, 2019, 14(4): e0215158. doi: 10.1371/journal.pone.0215158
    [22]
    王慧娟. 低氧对团头鲂生理生化指标及低氧应答基因表达的影响[D]. 武汉: 华中农业大学, 2015: 20.
    [23]
    吴丽娜, 吴彪, 刘志鸿, 等. 低氧预适应对魁蚶在低氧胁迫下生理生化指标的影响[J]. 渔业科学进展, 2023, 44(2): 98-106.
    [24]
    马九菊, 黄进强, 李永娟, 等. 低氧胁迫对虹鳟心脏生化指标和低氧相关基因表达量的影响[J]. 渔业科学进展, 2025, 46(1): 82-92.
    [25]
    郑尧, 田元勇, 刘洋, 等. 海洋经济贝类中Opine脱氢酶研究进展[J]. 大连海洋大学学报, 2019, 34(2): 296-302.
    [26]
    夏玉莹, 张继红, 刘毅. 低氧胁迫下虾夷扇贝的行为特征及生理生化响应[J]. 中国水产科学, 2021, 28(10): 1319-1328. doi: 10.12264/JFSC2021-0170
    [27]
    LI Q, ZHANG F, WANG M X, et al. Effects of hypoxia on survival, behavior, and metabolism of Zhikong scallop Chlamys farreri Jones et Preston 1904[J]. J Oceanol Limnol, 2020, 38(2): 351-366. doi: 10.1007/s00343-019-9074-0
    [28]
    WOO S, DENIS V, WON H, et al. Expressions of oxidative stress-related genes and antioxidant enzyme activities in Mytilus galloprovincialis (Bivalvia, Mollusca) exposed to hypoxia[J]. Zool Stud, 2013, 52: 1-8. doi: 10.1186/1810-522X-52-1
    [29]
    CHEN J H, MAI K S, MA H M, et al. Effects of dissolved oxygen on survival and immune responses of scallop (Chlamys farreri Jones et Preston)[J]. Fish Shellfish Immun, 2007, 22(3): 272-281. doi: 10.1016/j.fsi.2006.06.003
    [30]
    NIE H T, WANG H M, JIANG K Y, et al. Transcriptome analysis reveals differential immune related genes expression in Ruditapes philippinarum under hypoxia stress: potential HIF and NF-κB crosstalk in immune responses in clam[J]. BMC Genomics, 2020, 21: 318. doi: 10.1186/s12864-020-6734-6
    [31]
    钱圆. 刺参对不同溶氧水平和干露的生理生态学响应及其机理研究[D]. 青岛: 中国海洋大学, 2011: 36-37.
    [32]
    何凡, 陈融斌, 缪雄平, 等. 急性低氧胁迫对福建牡蛎鳃组织氧化应激和闭壳肌能量代谢的影响[J]. 中国水产科学, 2024, 31(3): 278-285.
    [33]
    XU D X, WANG X. Lysine acetylation is an important post-translational modification that modulates heat shock response in the sea cucumber Apostichopus japonicus[J]. Int J Mol Sci, 2019, 20(18): 4423. doi: 10.3390/ijms20184423
    [34]
    YANG Y H, WEN R, YANG N, et al. Roles of protein post-translational modifications in glucose and lipid metabolism: mechanisms and perspectives[J]. Mol Med, 2023, 29: 93.

Catalog

    Article views (32) PDF downloads (0) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return