LI Lingyun, HAN Tingting, ZHANG Huangchen, SHI Rongjun, QI Zhanhui, LI Junwei, LIU Huaxue, XIONG Lanlan, HUANG Honghui. Characteristics of soil organic carbon and labile components at early stage of reforestation of aquaculture pond[J]. South China Fisheries Science, 2024, 20(4): 88-97. DOI: 10.12131/20240094
Citation: LI Lingyun, HAN Tingting, ZHANG Huangchen, SHI Rongjun, QI Zhanhui, LI Junwei, LIU Huaxue, XIONG Lanlan, HUANG Honghui. Characteristics of soil organic carbon and labile components at early stage of reforestation of aquaculture pond[J]. South China Fisheries Science, 2024, 20(4): 88-97. DOI: 10.12131/20240094

Characteristics of soil organic carbon and labile components at early stage of reforestation of aquaculture pond

More Information
  • Received Date: April 29, 2024
  • Revised Date: May 10, 2024
  • Accepted Date: May 12, 2024
  • Available Online: May 21, 2024
  • Reforest mangrove in aquaculture pond is considered to be an effective way to restore mangrove wetlands and their carbon sink function. In order to reveal the characteristics of soil organic carbon pools and their influencing factors at the early stage of reforest mangrove in aquaculture pond, and to elucidate the dynamic changes of soil carbon pools in the process of mangrove wetland restoration, we collected soil samples from a mangrove reforest aquaculture pond located in the northwest coast of Kaozhou Bay, Huidong County, Guangdong Province, southern China. The mangroves Rhizophora stylosa and Avicennia marina were planted in 2021. Cylindrical soil samples with 0–100 cm in length were collected in three areas: the mangrove plantation island (PI), bare island (BI), and the soil under the water channel (WC) in the pond. The soil sub-samples were compared for the soil organic carbon (SOC), as well as active organic carbon [Easily oxidizable organic carbon (EOC), microbial organic carbon (MBC) and soluble organic carbon (DOC)] mass fractions among different sampling areas and depths, as well as the relationship with soil physicochemical parameters. The results show that the average SOC mass fraction for the 0–100 cm soil depth followed a descending order: BI [(7.92±0.43) g·kg−1]>PI [(7.72±0.35) g·kg−1]>WC [(7.48±0.69) g·kg−1]. Similarly, the average SOC density followed a descending order: BI [(84.56±3.65) Mg·hm−2]>PI [(72.01±3.20) Mg·hm−2]>WC [(70.12±1.44) Mg·hm−2]. The highest SOC mass fraction and density were observed at the 40–60 cm depth in PI and BI areas, and at the 0–20 cm depth in WC area. The EOC, MBC and DOC mass fractions were highest in PI area, followed by WC and BI areas. The highest EOC and MBC in PI area were found at depths of 40–60 and 80–100 cm, respectively, which were deeper than those in WC and BI areas. Soil bulk density, total nitrogen and total phosphorus were identified as key factors influencing the distribution patterns of labile organic carbon. The EOC and DOC contents showed a significantly negative correlation with soil bulk density and total phosphorus, while the MBC content showed a significantly negative correlation with total nitrogen (p<0.05). The relatively high proportion of labile organic carbon components within SOC indicates that the soil carbon pool is still in an active state. The ratio of labile carbon of SOC is relatively high at the middle and deeper soil depth, indicating that the mangrove has promoted presence of labile organic carbon at middle and deeper soil depths, and mangrove facilitate the migration of organic carbon in the deeper soil layers. As the mangrove plants continue to grow, their effects on the carbon sequestration become more significant.

  • [1]
    李林锋, 吴小凤, 刘素青. 湛江5种红树林树种光合作用特性及光合固碳能力研究[J]. 广西植物, 2015, 35(6): 825-832. doi: 10.11931/guihaia.gxzw201412028
    [2]
    ALONGI D M. Carbon cycling and storage in mangrove forests[J]. Annu Rrv Mar Sci, 2014, 6(1): 195-219. doi: 10.1146/annurev-marine-010213-135020
    [3]
    ARNAUD M, KRAUSE S, NORBY R J, et al. Global mangrove root production, its controls and roles in the blue carbon budget of mangroves[J]. Global Change Biol, 2023, 29(12): 3256-3270. doi: 10.1111/gcb.16701
    [4]
    LIU H X, REN H, HUI D F, et al. Carbon stocks and potential carbon storage in the mangrove forests of China[J]. J Environ Manage, 2014, 133(1): 86-93.
    [5]
    林秋莲, 顾肖璇, 陈昕韡, 等. 红树植物秋茄替代互花米草的生态修复评估: 以浙江温州为例[J]. 生态学杂志, 2020, 39(6): 1761-1768.
    [6]
    Food and Agriculture Organization. The world's mangroves 1980–2005[R]. Rome: Food and Agriculture Organization of the United Nations, 2007: 9-13.
    [7]
    RICHARDS D R, FRIESS D A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012[J]. PNAS, 2016, 113(2): 344-349. doi: 10.1073/pnas.1510272113
    [8]
    LUO Y Y, NOT C, CANNICCI S. Mangroves as unique but understudied traps for anthropogenic marine debris: a review of present information and the way forward[J]. Environ Pollut, 2021, 271(1): 116291-116299.
    [9]
    王文卿, 张林, 张雅棉, 等. 红树林退塘还林研究进展[J]. 厦门大学学报 (自然科学版), 2021, 60(2): 348-354.
    [10]
    范航清, 莫竹承. 广西红树林恢复历史、成效及经验教训[J]. 广西科学, 2018, 25(4): 363-371, 387.
    [11]
    YANG Y, YU K, FENG H. Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China[J]. Agr Water Manage, 2018, 201(1): 133-143.
    [12]
    MANDAL A, MAJUMDER A, DHALIWAL S S, et al. Impact of agricultural management practices on soil carbon sequestration and its monitoring through simulation models and remote sensing techniques: a review[J]. EST, 2022, 52(1): 1-49.
    [13]
    YU C X, FENG J X, YUE W Z, et al. The role of blue carbon stocks becomes more labile with mangrove development[J]. Ecol Indic, 2023, 154(1): 110634-110643.
    [14]
    鲁如坤. 土壤化学农业分析方法 [M]. 北京: 中国农业科技出版社, 1999: 166-169.
    [15]
    陈小花, 陈宗铸, 雷金睿, 等. 东寨港红树林中不同群落区表层土壤有机碳及其活性组分浓度[J]. 湿地科学, 2022, 20(4): 499-507.
    [16]
    胡慧蓉, 马焕成, 罗承德, 等. 森林土壤有机碳分组及其测定方法[J]. 土壤通报, 2010, 41(4): 1018-1024.
    [17]
    熊燕梅, 吴晓东, 陈玉军, 等. 退塘还林中地形和植被恢复方式对红树林恢复效果影响[J]. 广东海洋大学学报, 2023, 43(4): 122-128. doi: 10.3969/j.issn.1673-9159.2023.04.015
    [18]
    覃国铭, 张靖凡, 周金戈, 等. 广东省红树林土壤碳储量及固碳潜力研究[J]. 热带地理, 2023, 43(1): 23-30.
    [19]
    李燕, 赵志忠, 王鸿平, 等. 海南东寨港红树林湿地沉积物有机碳的分布特征[J]. 安徽农业大学学报, 2018, 45(2): 268-273.
    [20]
    张耀鸿, 王艳玲, 李仁英, 等. 互花米草入侵对潮滩土壤活性有机碳组分的影响[J]. 土壤通报, 2012, 43(1): 102-106.
    [21]
    陈顺洋, 安文硕, 陈彬, 等. 红树林生态修复固碳效果的主要影响因素分析[J]. 应用海洋学学报, 2021, 40(1): 34-42.
    [22]
    KAUFFMAN J B, BERNARDINO A F, FERREIRA T O, et al. Shrimp ponds lead to massive loss of soil carbon and greenhouse gas emissions in northeastern Brazilian mangroves[J]. Ecol Evol, 2018, 8(11): 5530-5540. doi: 10.1002/ece3.4079
    [23]
    HANKE A, CERLI C, MUHR J, et al. Redox control on carbon mineralization and dissolved organic matter along a chronosequence of paddy soils[J]. Eur J Soil Sci, 2013, 64(4): 476-487. doi: 10.1111/ejss.12042
    [24]
    赵泽阳, 赵志忠, 付博, 等. 海南岛北部地区红树林湿地土壤有机碳分布规律及影响因素[J]. 广东农业科学, 2018, 45(12): 49-55.
    [25]
    许延昭, 马维伟, 李广, 等. 尕海湿地植被退化过程中土壤轻重组有机碳动态变化特征[J]. 水土保持学报, 2018, 32(3): 205-211.
    [26]
    张哲, 王邵军, 李霁航, 等. 土壤易氧化有机碳对西双版纳热带森林群落演替的响应[J]. 生态学报, 2019, 39(17): 6257-6263.
    [27]
    许梦璐, 吴炜, 颜铮明, 等. 滨海滩涂不同土地利用类型土壤活性有机碳浓度与垂直分布[J]. 南京林业大学学报 (自然科学版), 2020, 44(4): 167-175.
    [28]
    徐广平, 李艳琼, 沈育伊, 等. 桂林会仙喀斯特湿地水位梯度下不同植物群落土壤有机碳及其组分特征[J]. 环境科学, 2019, 40(3): 1491-1503.
    [29]
    JANDL R, SOLLINS P. Water-extractable soil carbon in relation to the belowground carbon cycle[J]. Biol Fert Soils, 1997, 25: 196-201. doi: 10.1007/s003740050303
    [30]
    张金波, 宋长春. 土地利用方式对土壤碳库影响的敏感性评价指标[J]. 生态环境, 2003, 12(4): 500-504.
    [31]
    LIPSON D A, SCHMIDT S K, MONSON R K. Carbon availability and temperature control the post-snowmelt decline in alpine soil microbial biomass[J]. Soil Biol Biochem, 2000, 32(4): 441-448. doi: 10.1016/S0038-0717(99)00068-1
    [32]
    周雅心, 陈钰, 郑毅, 等. 中国典型滨海湿地转变为养殖塘对土壤细菌多样性及群落结构的影响[J]. 环境科学学报, 2021, 41(6): 2402-2413.
    [33]
    辛琨, 颜葵, 李真, 等. 海南岛红树林湿地土壤有机碳分布规律及影响因素研究[J]. 土壤学报, 2014, 51(5): 1078-1086.
    [34]
    SHAO X X, YANG W Y, WU M. Seasonal dynamics of soil labile organic carbon and enzyme activities in relation to vegetation types in Hangzhou Bay tidal flat wetland[J]. PLoS One, 2015, 10(11): e0142677. doi: 10.1371/journal.pone.0142677
    [35]
    刘亚男, 郗敏, 张希丽, 等. 中国湿地碳储量分布特征及其影响因素[J]. 应用生态学报, 2019, 30(7): 2481-2489.
    [36]
    刘江伟, 徐海东, 林同岳, 等. 海涂围垦区不同林分土壤活性有机碳垂直变化特征[J]. 林业科学研究, 2022, 35(3): 18-26.
    [37]
    肖烨, 黄志刚, 武海涛, 等. 三江平原不同湿地类型土壤活性有机碳组分及浓度差异[J]. 生态学报, 2015, 35(23): 7625-7633.
    [38]
    章琪, 袁旭音, 韩磊, 等. 不同类型河岸带土壤活性有机碳空间分布及影响因素[J]. 环境科技, 2017, 30(5): 12-17. doi: 10.3969/j.issn.1674-4829.2017.05.005
    [39]
    高宇. 中国典型红树林湿地沉积物碳库分布特征及控制因子研究[D]. 北京: 清华大学, 2019: 78-79.
    [40]
    徐薇薇, 乔木. 干旱区土壤有机碳浓度与土壤理化性质相关分析[J]. 中国沙漠, 2014, 34(6): 1558-1561. doi: 10.7522/j.issn.1000-694X.2013.00311
    [41]
    徐侠, 陈月琴, 汪家社, 等. 武夷山不同海拔高度土壤活性有机碳变化[J]. 应用生态学报, 2008, 19(3): 539-544.
  • Related Articles

    [1]QIAN Zhenjia, XU Jincheng, ZHANG Chenglin, YU Youbin, LIU Huang. Effect of different flow velocity on tail beat frequency and blood physiology of Plectropomus leopardus[J]. South China Fisheries Science, 2023, 19(2): 89-97. DOI: 10.12131/20220153
    [2]LIU Hongyan, FU Zhengyi, YU Gang, MA Zhenhua. Study on relationship between body mass and blood indexes of juvenile Thunnus albacares[J]. South China Fisheries Science, 2023, 19(1): 173-178. DOI: 10.12131/20220077
    [3]FANG Wei, ZHOU Shengjie, ZHAO Wang, YANG Rui, HU Jing, YU Gang, MA Zhenhua. Correlation and path analysis of morphological traits to body mass of juvenile Thunnus albacores[J]. South China Fisheries Science, 2021, 17(1): 52-58. DOI: 10.12131/20200158
    [4]ZHAO Hongxia, HU Junru, HUANG Hanhua, CHEN Bing, CAO Junming. Effect of dietary β-glucan on blood metabolites and immunity of Litopenaeus vannamei at low salinities[J]. South China Fisheries Science, 2020, 16(5): 87-98. DOI: 10.12131/20200046
    [5]WU Bin, FANG Chunlin, HE Gang, FU Peifeng. FiSAT II Software supported Length based Cohort Analysis[J]. South China Fisheries Science, 2013, 9(4): 94-98. DOI: 10.3969/j.issn.2095-0780.2013.04.016
    [6]HUANG Guangzhong, HU Hui, XIAO Keyu, LUO Shimin, XIE Peirong, OUYANG Juying. Effects of plant extract from grape seed and sweet wormwood on intestinal digestive enzyme activities and blood biochemical parameters of eel (Monopterus albus)[J]. South China Fisheries Science, 2013, 9(2): 70-75. DOI: 10.3969/j.issn.2095-0780.2013.02.012
    [7]LIU Zaijun, CEN Jianwei, LI Laihao, YANG Xianqing, HAO Shuxian, WEI Ya, ZHOU Wanjun. Thoughts and prospect of comprehensive utilization of tilapia blood[J]. South China Fisheries Science, 2012, 8(2): 76-80. DOI: 10.3969/j.issn.2095-0780.2012.02.012
    [8]HUANG Zhong, LIN Heizhao, NIU Jin, LV Guomin, CHEN Xu, CHEN Mingqiang. Effects of dietary inositol on growth, feed utilization and blood biochemical index of juvenile pompano (Trachinotus ovatus)[J]. South China Fisheries Science, 2011, 7(3): 39-44. DOI: 10.3969/j.issn.2095-0780.2011.03.007
    [9]YUAN Fenghua, LIN Heizhe, LI Zhuojia, LU Xin, YANG Qibin. Effects of dietary Bacillus licheniformis on blood physiological-biochemical indices in cultured Lates calarifer[J]. South China Fisheries Science, 2009, 5(2): 45-50. DOI: 10.3969/j.issn.1673-2227.2009.02.008
    [10]SU Youlu, XU Liwen, FENG Juan, GUO Zhixun, WANG Jiangyong. Study on the morphology of peripheral blood cells of juvenile cobia Rachycentron canadum[J]. South China Fisheries Science, 2007, 3(1): 48-53.
  • Cited by

    Periodical cited type(2)

    1. 刘鸿雁,付正祎,于刚,马振华. 黄鳍金枪鱼幼鱼体质量与血液指标关系研究. 南方水产科学. 2023(01): 173-178 . 本站查看
    2. 戴世明,周胜杰,于刚,马振华. 金枪鱼养殖研究进展. 中国渔业质量与标准. 2023(01): 51-59 .

    Other cited types(0)

Catalog

    Article views (100) PDF downloads (59) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return