Citation: | LIU Yuhang, XIANG Huan, HUANG Hui, WEI Ya, CEN Jianwei, PAN Chuang, LI Chunsheng, ZHAO Yongqiang, HAO Shuxian. Optimization of process and mechanism of extracting astaxanthin from shrimp shells with deep eutectic solvent[J]. South China Fisheries Science, 2024, 20(3): 164-172. DOI: 10.12131/20230225 |
Development of efficient and safe extraction technology of astaxanthin from shrimp shells is crucial for transforming waste into valuable resources. In this study, astaxanthin in shrimp shells was extracted with deep eutectic solvent composed of lactic acid-choline chloride. A single-factor test was carried out to explore the influence of extraction conditions on the extraction rate, and a response surface test was adopted to optimize the extraction process. The mechanism of astaxanthin extraction with deep eutectic solvent was explored by physical and chemical analysis. The optimized process conditions were: molar ratio of 2.5∶1, water content of 9.5%, ultrasonic time of 30.5 min, and actual yield of 24.41 μg·g−1. The Fourier transform infrared spectroscopy shows that there was no change in functional groups during deep eutectic solvent synthesis, but hydrogen bond might be the reason for effective extraction of astaxanthin, and viscosity would affect the extraction process of product.
[1] |
CHANG M X, XIONG F. Astaxanthin and its effects in inflammatory responses and inflammation-associated diseases: recent advances and future directions[J]. Molecules, 2020, 25(22): 5342. doi: 10.3390/molecules25225342
|
[2] |
HAMA S, UENISHI S, YAMADA A, et al. Scavenging of hydroxyl radicals in aqueous solution by astaxanthin encapsulated in liposomes[J]. Biol Pharm Bull, 2012, 35(12): 2238-2242. doi: 10.1248/bpb.b12-00715
|
[3] |
相欢, 刘宇航, 李来好, 等. 虾青素运载体系的研究进展[J]. 现代食品科技, 2023, 39(9): 364-370.
|
[4] |
闫娇, 高坤鹏, 余可欣, 等. 脂肪酶Sv-lip5的异源表达及其在虾青素酯水解中的应用[J]. 南方水产科学, 2022, 18(2): 31-38. doi: 10.12131/20210293
|
[5] |
苏家齐, 祝华萍, 朱长波, 等. 盐度和钠离子/钾离子对凡纳滨对虾幼虾存活与组织结构的影响[J]. 南方水产科学, 2021, 17(5): 45-53.
|
[6] |
高芳芳, 王迪, 陈胜军, 等. 罗氏沼虾氨基脲分布特征及贮藏变化研究[J]. 南方水产科学, 2023, 19(1): 147-154. doi: 10.12131/20220138
|
[7] |
农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2021中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2021: 24.
|
[8] |
全国水产技术推广总站, 中国水产学会. 中国小龙虾产业发展报告(2021)[J]. 中国水产, 2021(7): 27-33.
|
[9] |
侯会绒, 孙兆远, 贡汉坤. 超声波提取克氏原螯虾壳中虾青素[J]. 食品与发酵工业, 2015, 41(9): 209-214.
|
[10] |
ZHAO T, YAN X J, SUN L J, et al. Research progress on extraction, biological activities and delivery systems of natural astaxanthin[J]. Trends Food Sci Technol, 2019, 91: 354-361. doi: 10.1016/j.jpgs.2019.07.014
|
[11] |
SHARAYEI P, AZARPAZHOOH E, ZOMORODI S, et al. Optimization of ultrasonic-assisted extraction of astaxanthin from green tiger (Penaeus semisulcatus) shrimp shell[J]. Ultrason Sonochem, 2021, 76: 105666. doi: 10.1016/j.ultsonch.2021.105666
|
[12] |
周佳悦, 候艳丽, 王凡予, 等. 超声辅助低共熔溶剂提取红松树皮原花青素及动力学研究[J]. 食品工业科技, 2023, 44(14): 229-236.
|
[13] |
LUCIANA I, VANESSA B, WANDERSON D, et al. Deep eutectic solvents for the production and application of new materials[J]. Appl Mater Today, 2018, 10: 30-50. doi: 10.1016/j.apmt.2017.11.005
|
[14] |
张艺欣, 邬旭然, 何若菡, 等. 天然低共熔溶剂萃取酚类物质研究进展[J]. 食品与机械, 2022, 38(11): 212-216, 240.
|
[15] |
CHEN Z, RAGAUSKAS A, WAN C X. Lignin extraction and upgrading using deep eutectic solvents[J]. Ind Crops Prod, 2020, 147: 112241. doi: 10.1016/j.indcrop.2020.112241
|
[16] |
BI W T, TIAN M L, ROW K H, et al. Evaluation of alcohol-based deep eutectic solvent in extraction and determination of flavonoids with response surface methodology optimization[J]. J Chromatogr A, 2013, 1285: 22-30. doi: 10.1016/j.chroma.2013.02.041
|
[17] |
ALAM M, MUHAMMAD G, KHAN M, et al. Choline chloride-based deep eutectic solvents as green extractants for the isolation of phenolic compounds from biomass[J]. J Clean Prod, 2021, 309: 127445. doi: 10.1016/j.jclepro.2021.127445
|
[18] |
ZHANG H, TANG B K, ROW K H. A green deep eutectic solvent-based ultrasound-assisted method to extract astaxanthin from shrimp byproducts[J]. Anal Lett, 2014, 47: 742-749. doi: 10.1080/00032719.2013.855783
|
[19] |
SANTOS C, PADILHA C, DAMASCENO K, et al. Astaxanthin recovery from shrimp residue by solvent ethanol extraction using choline chloride: glycerol deep eutectic solvent as adjuvant[J]. J Braz Chem Soc, 2021, 32(5): 1030-1039.
|
[20] |
吴晓青, 刘永静, 孙燕丽. 低共熔溶剂提取橄榄多酚及其抗氧化活性评价[J]. 食品工业, 2023, 44(6): 80-86.
|
[21] |
STACHOWIAK B, SZULC P. Astaxanthin for the food industry[J]. Molecules, 2021, 26(9): 2666. doi: 10.3390/molecules26092666
|
[22] |
李海飞, 杨毅, 亓雨芮, 等. 超声波辅助酸性天然低共熔溶剂提取黑果腺肋花楸花青素及其稳定性和抗氧化活性分析[J]. 食品工业科技, 2023, 44(8): 259-269.
|
[23] |
杨塬兴. 低共熔溶剂分离蔗渣组分及其利用研究[D]. 广州: 华南理工大学, 2022: 27-28.
|
[24] |
梁珍珍. 基于氯化胆碱/二元醇的低共熔溶剂制备、理化性质及提取燕麦蛋白研究[D]. 西安: 陕西科技大学, 2022: 19-20.
|
[25] |
刘戈妹. 低共熔溶剂对玉米淀粉结构及理化性质影响的研究[D]. 西安: 陕西科技大学, 2023: 23-24.
|
[26] |
LING J, CHAN Y S, NANDONG J, et al. Formulation of choline chloride/ascorbic acid natural deep eutectic solvent: characterization, solubilization capacity and antioxidant property[J]. LWT, 2020, 133: 110096. doi: 10.1016/j.lwt.2020.110096
|
[27] |
张雁东, 吴晓静, 李子轩, 等. 温度扰动下氯化胆碱/丙三醇溶液的二维红外光谱研究[J]. 光谱学与光谱分析, 2023, 43(10): 3047-3051.
|
[28] |
张言, 尹静梅, 崔颖娜. 低共熔法在萃取酚类化合物中的应用进展[J]. 石油化工, 2022, 51(1): 92-99. doi: 10.3969/j.issn.1000-8144.2022.01.014
|
[29] |
FLORINDO C, BRANCO L C, MARRUCHO I M. Quest for green-solvent design: from hydrophilic to hydrophobic (deep) eutectic solvents[J]. Chemsuschem, 2019, 12(8): 1549-1559. doi: 10.1002/cssc.201900147
|
[30] |
LIU Y T, CHEN YA, XING Y J, et al. Synthesis and characterization of novel ternary deep eutectic solvents[J]. Chin Chem Lett, 2014, 25: 104-106. doi: 10.1016/j.cclet.2013.09.004
|
[31] |
李苗, 陈必清, 何敏. 氯化胆碱-尿素低共熔离子液体的粘度和电导率[J]. 湖北大学学报(自然科学版), 2018, 40(1): 96-102.
|
[32] |
张荣清, 刘云云, 陈海峰, 等. 低共熔溶剂体系提取中药渣中肉桂醛[J]. 化学工程, 2023, 51(4): 22-27.
|
[33] |
LEE Y R, ROW K H. Comparison of ionic liquids and deep eutectic solvents as additives for the ultrasonic extraction of astaxanthin from marine plants[J]. J Ind Eng Chem, 2016, 39: 87-92.
|
[34] |
ZOU T B, JIA Q, LI H W, et al. Response surface methodology for ultrasound-assisted extraction of astaxanthin from Haematococcus pluvialis[J]. Mar Drugs, 2013, 5: 1644-1655.
|
[1] | MA Wenyu, YANG Wei, QIN Xiaoming, CAO Wenhong, LIN Haisheng. Ameliorative effect of oyster enzymatic products on glucocorticoid-induced osteoporosis in rats[J]. South China Fisheries Science. DOI: 10.12131/20240223 |
[2] | ZHANG Xianbing, QIN Yiwen, YANG Wei, LI Geng, HU Yupeng, YANG Shengfa, HU Jiang, LI Wenjie. Progress in study and application of fish bioenergetics models[J]. South China Fisheries Science, 2024, 20(6): 53-61. DOI: 10.12131/20240106 |
[3] | LIAO Zujun, WANG Xuefeng, ZHOU Yanbo, ZHANG Lei, LYU Shaoliang, WU Qia'er, DONG Jianyu, MA Shengwei. Analysis of effects of environmental factors on Sthenoteuthis oualaniensis based on structural equation model[J]. South China Fisheries Science, 2024, 20(2): 11-18. DOI: 10.12131/20230127 |
[4] | ZHENG Huanyu, GAO Jialong, ZHANG Chaohua, SI Rui, ZHENG Huina, CAO Wenhong, QIN Xiaoming. Effects of Chlamys nobilis and its enzymatic hydrolysates on reproductive capacity of hemi-castrated male rats[J]. South China Fisheries Science, 2021, 17(3): 94-101. DOI: 10.12131/20200251 |
[5] | ZHANG Kui, CHEN Zuozhi, HUANG Zirong, XU Youwei. Comparison of delay difference model and surplus production model applied to albacore (Thunnus alalunga) in the South Atlantic Ocean[J]. South China Fisheries Science, 2015, 11(3): 1-6. DOI: 10.3969/j.issn.2095-0780.2015.03.001 |
[6] | KE Changliang, LIN Qin, GAN Juli, LI Liudong, CHEN Jiewen, WANG Zenghuan, HUANG Ke. Thermodynamic model and impact factors for organic pesticide adsorption in environment[J]. South China Fisheries Science, 2013, 9(1): 68-73. DOI: 10.3969/j.issn.2095-0780.2013.01.012 |
[7] | LIU Qun, XU Binduo, REN Yiping. Prediction of freshwater aquaculture production of Qingdao city by using a grey prediction model[J]. South China Fisheries Science, 2009, 5(5): 38-43. DOI: 10.3969/j.issn.1673-2227.2009.05.007 |
[8] | CUI He, LIU Qun, WANG Yanjun. Application of a continuous Fox-form production model in fishery stock assessment[J]. South China Fisheries Science, 2008, 4(2): 34-42. |
[9] | WANG Yingbin, LIU Qun. An elementary study of impacts of error structure on the estimation of fish natural mortality coefficient using cohort analysis (CA) model[J]. South China Fisheries Science, 2006, 2(3): 7-15. |
[10] | GUO Quan-you, YANG Xian-shi. Comparison of different bacteria growth models on chilled Pseudosciaena crocea[J]. South China Fisheries Science, 2005, 1(5): 44-49. |