LU Chen, HU Xiao, CHEN Shengjun, WU Yanyan, HUANG Hui, XIANG Huan, QI Bo, DENG Jianchao. Preparation, in vitro activity and physicochemical properties of collagenase inhibitory peptide from tilapia skin[J]. South China Fisheries Science, 2024, 20(2): 150-159. DOI: 10.12131/20230205
Citation: LU Chen, HU Xiao, CHEN Shengjun, WU Yanyan, HUANG Hui, XIANG Huan, QI Bo, DENG Jianchao. Preparation, in vitro activity and physicochemical properties of collagenase inhibitory peptide from tilapia skin[J]. South China Fisheries Science, 2024, 20(2): 150-159. DOI: 10.12131/20230205

Preparation, in vitro activity and physicochemical properties of collagenase inhibitory peptide from tilapia skin

More Information
  • Received Date: October 25, 2023
  • Revised Date: December 19, 2023
  • Accepted Date: January 29, 2024
  • Available Online: February 04, 2024
  • Tilapia skin, rich in collagen, is an ideal raw material for preparation of bioactive peptides. To provide references for the high-value utilization of tilapia processing by-products and the development of food protein-derived collagenase inhibitors, we prepared tilapia skin collagenase inhibitory peptide (TSCIP) from tilapia skin by enzymatic hydrolysis, and studied the correlation between its collagenase inhibitory activity and metal ion binding activity. The results show that the tilapia skin product hydrolyzed by alkaline protease for 4 h had the highest collagenase inhibition activity, as well as Zn2+ and Mg2+ binding activity, and it was mainly composed of small molecular peptides (<1 000 D accounting for 85.65%). Ultraviolet (UV), Fourier transform infrared (FTIR) and circular dichroism (CD) analysis show that the secondary structure of TSCIP changed after binding with Zn2+, Mg2+ and collagenase, and the β-sheet content of TSCIP increased significantly. Zn2+ and Mg2+ bind to TSCIP mainly through carboxyl oxygen, amino nitrogen atoms and carbonyl groups, while collagenase binds to TSCIP mainly through amino nitrogen atoms and carbonyl groups.

  • [1]
    农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2023中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2023: 17-18.
    [2]
    韩梦瑶, 李新月, 王晓梅, 等. 大口黑鲈鱼皮胶原蛋白肽的制备及抗氧化活性研究[J]. 食品与机械, 2022, 38(4): 175-182, 194.
    [3]
    黄丽萍. 浅谈罗非鱼科学养殖技术[J]. 水产养殖, 2022, 43(8): 69-71. doi: 10.3969/j.issn.1004-2091.2022.08.019
    [4]
    宋宗元. 罗非鱼鱼皮胶原肽的制备与生物活性研究[D]. 厦门: 集美大学, 2014: 1-2.
    [5]
    李瑞杰, 胡晓, 李来好, 等. 罗非鱼皮酶解物钙离子结合能力及其结合物的抗氧化活性[J]. 南方水产科学, 2019, 15(6): 106-111.
    [6]
    宋玉琼, 胡晓, 相欢, 等. 罗非鱼皮胶原肽的酪氨酸酶抑制活性与铜离子结合活性研究[J]. 南方水产科学, 2023, 19(1): 155-164.
    [7]
    陈慕雪. 三文鱼皮和罗非鱼皮胶原蛋白肽调控皮肤胶原合成和微生物定殖促进创伤愈合的作用研究[D]. 海口: 海南大学, 2021: 10-11.
    [8]
    FENG G Z, WEI L, CHE H L, et al. A frog peptide ameliorates skin photoaging through scavenging reactive oxygen species[J]. Front Pharmacol, 2021, 12: 761011.
    [9]
    NAGASE H, VISSE R, MURPHY G. Structure and function of matrix metalloproteinases and TIMPs[J]. Cardiovasc Res, 2006, 69(3): 562-573. doi: 10.1016/j.cardiores.2005.12.002
    [10]
    SILVA R, ALVES C P, BARBOSA F C, et al. Antioxidant, antitumoral, antimetastatic effect and inhibition of collagenase enzyme activity of Eleutherine bulbosa (Dayak onion) extract: in vitro, in vivo and in silico approaches[J]. J Ethnopharmacol, 2023, 318(Pt B): 117005.
    [11]
    肖寒, 刘秀妨, 郑淋, 等. 溶组织梭状芽孢杆菌胶原蛋白酶的研究进展[J]. 食品科学, 2022, 43(17): 316-325.
    [12]
    SARDY M. Role of matrix metalloproteinases in skin ageing[J]. Connect Tissue Res, 2009, 50(2): 132-138. doi: 10.1080/03008200802585622
    [13]
    艾丽奇. 鳕鱼皮胶原蛋白肽的抗皮肤光老化功效及其作用机制研究[D]. 广州: 华南理工大学, 2020: 24-25.
    [14]
    PIENTAWEERATCH S, PANAPISAL V, TANSIRIKONGKOL A. Antioxidant, anti-collagenase and anti-elastase activities of Phyllanthus emblica, Manilkara zapota and silymarin: an in vitro comparative study for anti-aging applications[J]. Pharm Biol, 2016, 54(9): 1865-1872. doi: 10.3109/13880209.2015.1133658
    [15]
    CHEN T J, HOU H, FAN Y, et al. Protective effect of gelatin peptides from Pacific cod skin against photoaging by inhibiting the expression of MMPs via MAPK signaling pathway[J]. J Photochem Photobiol B, 2016, 165: 34-41. doi: 10.1016/j.jphotobiol.2016.10.015
    [16]
    THRING T S, HILI P, NAUGHTON D P. Anti-collagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants[J]. BMC Complement Altern Med, 2009, 9: 27. doi: 10.1186/1472-6882-9-27
    [17]
    张金杨, 胡晓, 李来好, 等. 罗非鱼酶解物矿物离子结合能力及其结合物抗氧化活性[J]. 食品与发酵工业, 2018, 44(5): 76-81.
    [18]
    SUN L P, LIU Q M, FAN J, et al. Purification and characterization of peptides inhibiting MMP-1 activity with C terminate of Gly-Leu from simulated gastrointestinal digestion hydrolysates of tilapia (Oreochromis niloticus) skin gelatin[J]. J Agric Food Chem, 2018, 66(3): 593-601. doi: 10.1021/acs.jafc.7b04196
    [19]
    LI C Y, FU Y, DAI H J, et al. Recent progress in preventive effect of collagen peptides on photoaging skin and action mechanism[J]. Food Sci Human Wellness, 2022, 11(2): 218-229. doi: 10.1016/j.fshw.2021.11.003
    [20]
    崔潇, 江虹锐, 刘小玲, 等. 响应面法优化罗非鱼鱼皮胶原多肽螯合镁的工艺条件的研究[J]. 食品工业科技, 2013, 34(15): 238-241, 245.
    [21]
    KANG Y A, KIM Y J, JIN S K, et al. Antioxidant, collagenase inhibitory, and antibacterial effects of bioactive peptides derived from enzymatic hydrolysate of Ulva australis[J]. Mar Drugs, 2023, 21(9): 469. doi: 10.3390/md21090469
    [22]
    NITULESCU G, MIHAI D P, ZANFIRESCU A, et al. Discovery of new microbial collagenase inhibitors[J]. Life (Basel), 2022, 12(12): 2114.
    [23]
    AGUILAR-TOALA J E, LICEAGA A M. Identification of chia seed (Salvia hispanica L.) peptides with enzyme inhibition activity towards skin-aging enzymes[J]. Amino Acids, 2020, 52(8): 1149-1159. doi: 10.1007/s00726-020-02879-4
    [24]
    乔虹, 黎松松, 周南希, 等. 海洋来源金属离子螯合肽研究进展[J]. 食品工业科技, 2024, 45(1): 368-377.
    [25]
    CHEN L, SHEN X R, XIA G H. Effect of molecular weight of tilapia (Oreochromis niloticus) skin collagen peptide fractions on zinc-chelating capacity and bioaccessibility of the zinc-peptide fractions complexes in vitro digestion[J]. Appl Sci-Basel, 2020, 10(6): 2041. doi: 10.3390/app10062041
    [26]
    GUO L D, HARNEDY P A, O'KEEFFE M B, et al. Fractionation and identification of Alaska pollock skin collagen-derived mineral chelating peptides[J]. Food Chem, 2015, 173: 536-542. doi: 10.1016/j.foodchem.2014.10.055
    [27]
    宋易航, 王楚浩, 方柏山. 胶原酶研究进展与应用[J]. 化工学报, 2019, 70(9): 3213-3227.
    [28]
    汪婧瑜. 乌鳢短肽螯合物的结构分析及其生物活性的研究[D]. 湛江: 广东海洋大学, 2016: 28-29.
    [29]
    冯思敏, 王晶, 王羽莹, 等. 珍珠肽螯合钙的制备与性质表征[J]. 食品工业科技, 2022, 43(1): 119-126.
    [30]
    NARA M, MORII H, TANOKURA M. Coordination to divalent cations by calcium-binding proteins studied by FTIR spectroscopy[J]. Biochim Biophys Acta-Biomembr, 2013, 1828(10): 2319-2327. doi: 10.1016/j.bbamem.2012.11.025
    [31]
    陆剑锋, 孟昌伟, 李进, 等. 斑点叉尾鮰骨胶原多肽螯合钙的制备及其特征[J]. 水产学报, 2012, 36(2): 314-320.
    [32]
    MALISON A, ARPANUTUD P, KEERATIPIBUL S. Chicken foot broth byproduct: a new source for highly effective peptide-calcium chelate[J]. Food Chem, 2021, 345: 128713. doi: 10.1016/j.foodchem.2020.128713
    [33]
    HUANG S L, ZHAO L N, CAI X X, et al. Purification and characterisation of a glutamic acid-containing peptide with calcium-binding capacity from whey protein hydrolysate[J]. J Dairy Res, 2015, 82(1): 29-35. doi: 10.1017/S0022029914000715
    [34]
    ZHANG C, DU B W, SONG Z H, et al. Antioxidant activity analysis of collagen peptide-magnesium chelate[J]. Polym Test, 2023, 117: 107822. doi: 10.1016/j.polymertesting.2022.107822
    [35]
    邹文昊天. 大豆肽锌和大豆肽亚铁螯合物的制备及其特性研究[D]. 南昌: 南昌大学, 2022: 43-44.
    [36]
    de ALMEIDA L G N, THODE H, ESLAMBOLCHI Y, et al. Matrix metalloproteinases: from molecular mechanisms to physiology, pathophysiology, and pharmacology[J]. Pharmacol Rev, 2022, 74(3): 712-768.
    [37]
    PRIBIC R, VANSTOKKUM I H M, CHAPMAN D, et al. Protein secondary structure from fourier transform infrared and/or circular dichroism spectra[J]. Anal Biochem, 1993, 214(2): 366-378. doi: 10.1006/abio.1993.1511
    [38]
    KRISHNA S S, MAJUMDAR I, GRISHIN N V. Structural classification of zinc fingers: survey and summary[J]. Nucleic Acids Res, 2003, 31(2): 532-550. doi: 10.1093/nar/gkg161
    [1]
    Ministry of Agriculture and Rural Fisheries Administration, National Aquatic Technology Extension Station, Chinese Society of Fisheries. 2023 China Fishery Statistical Yearbook [M]. Beijing: China Agriculture Press, 2023: 17–18. (in Chinese)
    [2]
    HAN M Y, LI X Y, WANG X M, et al. Study on preparation of collagen peptides from Micropterus salmoides skin and its antioxidant activity [J]. Food and Machinery, 2022, 38(4): 175–182, 194. (in Chinese)
    [3]
    HUANG L P. A brief discussion on the scientific culture technology of tilapia [J]. Journal of Aquaculture, 2022, 43(8): 69–71. (in Chinese)
    [4]
    SONG Z Y. Preparation of tilapia skin collagen peptide and its biological activity [D]. Xiamen: Jimei University, 2014: 1–2. (in Chinese)
    [5]
    LI R J, HU X, LI L H, et al. Calcium ion binding ability of tilapia skin hydrolysate and its antioxidant activity [J]. South China Fisheries Science, 2019, 15(6): 106–111. (in Chinese)
    [6]
    SONG Y Q, HU X, XIANG H, et al. Study on tyrosinase inhibitory activity and Cu2+ binding activity of tilapia skin peptides [J]. South China Fisheries Science, 2023, 19(1): 155–164. (in Chinese)
    [7]
    CHEN M X. Study on the effects of collagen peptides from salmon skin and tilapia skin on skin collagen synthesis and microbial colonization to promote wound healing [D]. Haikou: Hainan University, 2021: 10–11. (in Chinese)
    [8]
    FENG G Z, WEI L, CHE H L, et al. A frog peptide ameliorates skin photoaging through scavenging reactive oxygen species [J]. Front Pharmacol, 2021, 12: 761011.
    [9]
    NAGASE H, VISSE R, MURPHY G. Structure and function of matrix metalloproteinases and TIMPs [J]. Cardiovasc Res, 2006, 69(3): 562–573.
    [10]
    SILVA R, ALVES C P, BARBOSA F C, et al. Antioxidant, antitumoral, antimetastatic effect and inhibition of collagenase enzyme activity of Eleutherine bulbosa (Dayak onion) extract: in vitro, in vivo and in silico approaches [J]. J Ethnopharmacol, 2023, 318(Pt B): 117005.
    [11]
    XIAO H, LIU X F, ZHENG L, et al. Recent Advances in Collagenase from Clostridium histolyticum [J]. Food Science, 2022, 43(17): 316–325. (in Chinese)
    [12]
    SARDY M. Role of matrix metalloproteinases in skin ageing [J]. Connect Tissue Res, 2009, 50(2): 132–138.
    [13]
    AI L Q. Study on protective effect of cod skin collagen peptides against skin photoaging and its action mechanism [D]. Guangzhou: South China University of Technology, 2020: 24–25. (in Chinese)
    [14]
    PIENTAWEERATCH S, PANAPISAL V, TANSIRIKONGKOL A. Antioxidant, anti-collagenase and anti-elastase activities of Phyllanthus emblica, Manilkara zapota and silymarin: an in vitro comparative study for anti-aging applications [J]. Pharm Biol, 2016, 54(9): 1865–1872.
    [15]
    CHEN T J, HOU H, FAN Y, et al. Protective effect of gelatin peptides from Pacific cod skin against photoaging by inhibiting the expression of MMPs via MAPK signaling pathway [J]. J Photochem Photobiol B, 2016, 165: 34–41.
    [16]
    THRING T S, HILI P, NAUGHTON D P. Anti-collagenase, antielastase and anti-oxidant activities of extracts from 21 plants [J]. BMC Complement Altern Med, 2009, 9: 27.
    [17]
    ZHANG J Y, HU X, LI L H, et al. Mineral ion binding activity of hydrolysates from Tilapia muscle and antioxidant activities of combinations [J]. Food and Fermentation Industries, 2018, 44(5): 76–81. (in Chinese)
    [18]
    SUN L P, LIU Q M, FAN J, et al. Purification and characterization of peptides inhibiting MMP-1 activity with C terminate of GlyLeu from simulated gastrointestinal digestion hydrolysates of tilapia (Oreochromis niloticus) skin gelatin [J]. J Agric Food Chem, 2018, 66(3): 593–601.
    [19]
    LI C Y, FU Y, DAI H J, et al. Recent progress in preventive effect of collagen peptides on photoaging skin and action mechanism [J]. Food Sci Human Wellness, 2022, 11(2): 218–229.
    [20]
    CUI X, JIANG H R, LIU X L, et al. Optimization of process conditions for tilapia skin collagen peptides chelating with magnesium by response surface methodology [J]. Science and Technology of Food Industry, 2013, 34(15): 238–241, 245. (in Chinese)
    [21]
    KANG Y A, KIM Y J, JIN S K, et al. Antioxidant, collagenase inhibitory, and antibacterial effects of bioactive peptides derived from enzymatic hydrolysate of Ulva australis [J]. Mar Drugs, 2023, 21(9): 469.
    [22]
    NITULESCU G, MIHAI D P, ZANFIRESCU A, et al. Discovery of new microbial collagenase inhibitors [J]. Life (Basel), 2022, 12(12): 2114.
    [23]
    AGUILAR-TOALA J E, LICEAGA A M. Identification of chia seed (Salvia hispanica L. ) peptides with enzyme inhibition activity towards skin-aging enzymes [J]. Amino Acids, 2020, 52(8): 1149–1159.
    [24]
    QIAO H, LI S S, ZHOU N X, et al. Research progress in metal ion chelated peptides of marine sources [J]. Science and Technology of Food Industry, 2024, 45(1): 368–377. (in Chinese)
    [25]
    CHEN L, SHEN X R, XIA G H. Effect of molecular weight of tilapia (Oreochromis niloticus) skin collagen peptide fractions on zinc-chelating capacity and bioaccessibility of the zinc-peptide fractions complexes in vitro digestion [J]. Appl Sci-Basel, 2020, 10(6): 2041.
    [26]
    GUO L D, HARNEDY P A, O'KEEFFE M B, et al. Fractionation and identification of Alaska pollock skin collagen-derived mineral chelating peptides [J]. Food Chem, 2015, 173: 536–542.
    [27]
    SONG Y H, WANG C H, FANG B S. Progress and application of collagenase research [J]. CIESC Journal, 2019, 70(9): 3213–3227. (in Chinese)
    [28]
    WANG J Y. Structure and biological activity analyses of short peptide chelated complex from Channa argus [D]. Zhanjiang: Guangdong Ocean University, 2016: 28–29. (in Chinese)
    [29]
    FENG S M, WANG J, WANG Y Y, et al. Preparation and Properties of Pearl Peptide Chelated Calcium [J]. Science and Technology of Food Industry, 2022, 43(1): 119–126. (in Chinese)
    [30]
    NARA M, MORII H, TANOKURA M. Coordination to divalent cations by calcium-binding proteins studied by FTIR spectroscopy [J]. Biochim Biophys Acta-Biomembr, 2013, 1828(10): 2319–2327.
    [31]
    LU J F, MENG C W, LI J, et al. Preparation and characterization of collagen polypeptide chelated calcium from fish bone powder of channel catfish (Ictalurus punctatus) [J]. Journal of Fisheries of China, 2012, 36(2): 314–320. (in Chinese)
    [32]
    MALISON A, ARPANUTUD P, KEERATIPIBUL S. Chicken foot broth byproduct: a new source for highly effective peptide-calcium chelate [J]. Food Chem, 2021, 345: 128713.
    [33]
    HUANG S L, ZHAO L N, CAI X X, et al. Purification and characterisation of a glutamic acid-containing peptide with calcium-binding capacity from whey protein hydrolysate [J]. J Dairy Res, 2015, 82(1): 29–35.
    [34]
    ZHANG C, DU B W, SONG Z H, et al. Antioxidant activity analysis of collagen peptide-magnesium chelate [J]. Polym Test, 2023, 117: 107822.
    [35]
    ZOU W H T. Preparation and properties of soybean peptide zinc chelate and soybean peptide ferrous chelate [D]. Nanchang: Nanchang University, 2022: 43–44. (in Chinese)
    [36]
    de ALMEIDA L G N, THODE H, ESLAMBOLCHI Y, et al. Matrix metalloproteinases: from molecular mechanisms to physiology, pathophysiology, and pharmacology [J]. Pharmacol Rev, 2022, 74(3): 712–768.
    [37]
    PRIBIC R, VANSTOKKUM I H M, CHAPMAN D, et al. Protein secondary structure from fourier transform infrared and/or circular dichroism spectra [J]. Anal Biochem, 1993, 214(2): 366–378.
    [38]
    KRISHNA S S, MAJUMDAR I, GRISHIN N V. Structural classification of zinc fingers: survey and summary [J]. Nucleic Acids Res, 2003, 31(2): 532–550.
  • Related Articles

    [1]ZHAO Shuhao, ZHU Huaping, MA Dongmei, GENG Guohua, ZHONG Zaixuan, FAN Jiajia, TIAN Yuanyuan, LIU Xiande, HAN Fang. Relationship between diurnal feeding rhythm and agrp gene expression level in Cyprinus carpio rubrofuscus[J]. South China Fisheries Science, 2024, 20(3): 101-111. DOI: 10.12131/20240014
    [2]CHEN Xu, ZHAO Wang, CHEN Mingqiang, TAN Chunming, YU Gang. Effects of salinity stress on oxygen consumption rate, ammonia excretion rate and immune-related enzyme activities of Strombus luhuanus[J]. South China Fisheries Science, 2022, 18(5): 160-165. DOI: 10.12131/20210346
    [3]CHEN Xiaojiang, XIONG Liling, WU Jiangu, QI Lu, WANG Quan. Effects of anesthetic MS-222 and eugenol on oxygen consumption rate and ammonia excretion rate of Sinogastromyzon szechuanensis[J]. South China Fisheries Science, 2020, 16(4): 69-74. DOI: 10.12131/20190261
    [4]DANG Yingchao, DAI Xiaojie, WU Feng. Effects of vertical distribution and soaking time of tuna longline fishing hooks on catches in North Pacific[J]. South China Fisheries Science, 2020, 16(3): 86-93. DOI: 10.12131/20190252
    [5]YUAN Quan, LÜ Weiwei, TANG Weihong, YUE Mengmeng, ZHOU Wenzong. Study on feeding rhythm and daily feed intake of Paramisgurnus dabryanus[J]. South China Fisheries Science, 2018, 14(5): 115-120. DOI: 10.3969/j.issn.2095-0780.2018.05.015
    [6]FENG Xue, ZHOU Yanbo, FAN Jiangtao, YU Jing, YUAN Huarong, WANG Wenjie, CHEN Pimao. Combined effect of body mass and water temperature on oxygen consumption, nitrogen excretion rate of starved Mugil cephalus[J]. South China Fisheries Science, 2018, 14(1): 114-120. DOI: 10.3969/j.issn.2095-0780.2018.01.015
    [7]WANG Gang, LI Jia'er, OU Youjun, WANG Jingxiang. Effects of temperature, salinity and pH on oxygen consumption of gill tissue in vitro of juvenile Trachinotus ovatus[J]. South China Fisheries Science, 2011, 7(5): 37-42. DOI: 10.3969/j.issn.2095-0780.2011.05.006
    [8]XU Xiaojuan, OU Youjun, LI Jiaer. Effects of delayed feeding on foraging, survival and growth of ovate pompano (Trachinotus ovatus)larvae during early developmental stage[J]. South China Fisheries Science, 2010, 6(1): 37-41. DOI: 10.3969/j.issn.1673-2227.2010.01.007
    [9]ZHU Aiyi, XIE Jiayan, ZHANG Shaobing. Diurnal rhythm of oxygen consumption and effects of body weight and water temperature on oxygen consumption rate of Sparus macrocephalus[J]. South China Fisheries Science, 2007, 3(6): 63-66.
    [10]QU You-jun, LIU Qi, LI Jia-er. Study on the oxygen consumption of fry of seba's snapper Lutjanus sebae[J]. South China Fisheries Science, 2006, 2(6): 19-24.

Catalog

    Recommendations
    Study on classification models for acoustic signals oflitopenaeus vannameifeeding on different kinds of diets
    CAO Zhengliang et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Effect of high temperature stress on intestinal tissues morphology and transcriptome ofprocambarus clarkii
    BAO Zhiming et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Analysis of changes in intestinal structure and microbial composition inelentheronema tetradactylumjuvenile at different days of age
    FENG Yuantai et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Alternation of gastric emptying, feeding behavior and digestive enzyme activities inhexagrammos otakii
    WANG Feng et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    Feeding habits of mantis shrimp oratosqilla oratoria in northern yellow sea based on carbon and nitrogen stable isotope analysis
    Qin Yuxue et al., CHINESE JOURNAL OF FISHERIES, 2023
    Association of preoperative hepatorenal function and lipid profile with improvement in disordered eating symptoms after bariatric metabolic surgery
    ZHANG Huilin et al., CHINA JOURNAL OF GENERAL SURGERY, 2025
    Time-restricted eating: watching the clock to treat obesity
    Ezpeleta, Mark et al., CELL METABOLISM, 2024
    Profiling the human intestinal environment under physiological conditions
    Shalon, Dari et al., NATURE, 2023
    Competitive transport and adsorption of co2/h2o in the graphene nano-slit pore: a molecular dynamics simulation study
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024
    Improved health outcomes of nasopharyngeal carcinoma patients 3 years after treatment by the ai-assisted home enteral nutrition management
    FRONTIERS IN NUTRITION, 2025
    Powered by
    Article views (655) PDF downloads (36) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return