Citation: | XU Bo, ZHANG Heng, TANG Fenghua, SUI Xin, ZHANG Yingying, HOU Gang. Relationship between center of gravity and environmental factors of main catches of purse seine fisheries in North Pacific high seas based on GAM[J]. South China Fisheries Science, 2020, 16(5): 60-70. DOI: 10.12131/20200006 |
Light seine fishery in North Pacific high seas is a new offshore fishery project in China in recent years. Scomber japonicus, Sardinops sagax, Ommastrephes bartramii and Cololabis saira are the main economic species in that area. It is important to clarify the relationship between the center of gravity and environmental factors for the study on the formation mechanism of fishery and the guidance of fishery production. Based on the 2016−2017 North Pacific Light Seine Fishery catch data and environmental factors such as sea surface temperature (SST) and chlorophyll a (Chl-a), we analyzed the seasonal variation of catch and its relationship with environment were analyzed by generalized additive model (GAM). On the whole, the center of gravity of North Pacific fisheries shifted northeast at the beginning of the fishing flood, and turned southwest during August to late September. The results show that S. japonicas fishing grounds were mainly at 148°E−154°E, 40°N−42°N; S. melanostictus fishing grounds were mainly at 149°E−153°E, 40°N−42°N; O. bartramii fishing grounds were mainly at 150°E−154°E, 40°N−42°N; C. saira fishing grounds were mainly at 150°E−153 °E, 41°N−42°N. Moreover, the optimal SST of S. japonicus CPUE was 13−20.18 ℃, and the optimal Chl-a was 0.1−0.8 mg·m−3. The optimal SST of S. sagax CPUE was 12−19.1 ℃, and the optimal Chl-a was 0.3−0.88 mg·m−3. The optimal SST of O. bartramii CPUE was 14−22 ℃, and the optimal Chl-a was 0.2−1.1 mg·m−3. The optimal SST of C. saira CPUE was 14−21 ℃, and the optimal Chl-a was 0.24−0.98 mg·m−3.
[1] |
FAO. State of world fisheries and aquaculture (SOFIA) 2018. [EB/OL]. (2018-06-01) [2019-10-1]. http://www.fao.org/fisheries/en/
|
[2] |
YU W, GUO A, ZHANG Y, et al. Climate-induced habitat suitability variations of chub mackerel Scomber japonicus in the East China Sea[J]. Fish Res, 2018, 207: 63-73. doi: 10.1016/j.fishres.2018.06.007
|
[3] |
李纲, 陈新军. 东海鲭鱼资源和渔场时空分布特征的研究[J]. 中国海洋大学学报 (自然科学版), 2007, 37(6): 921-926.
|
[4] |
程家骅, 林龙山. 东海区鲭鱼生物学特征及其渔业现状的分析研究[J]. 海洋渔业, 2004, 26(2): 73-78. doi: 10.3969/j.issn.1004-2490.2004.02.001
|
[5] |
YATSU A, WATANABE T, ISHIDA M, et al. Environmental effects on recruitment and productivity of Japanese sardine Sardinops melanostictus and chub mackerel Scomber japonicus with recommendations for management[J]. Fish Oceanogr, 2005, 14(4): 263-278. doi: 10.1111/j.1365-2419.2005.00335.x
|
[6] |
KAMIMURA Y, TAKAHASHI M, YAMASHITA N, et al. Larval and juvenile growth of chub mackerel Scomber japonicus in relation to recruitment in the western North Pacific[J]. Fish Sci, 2015, 81(3): 505-513. doi: 10.1007/s12562-015-0869-4
|
[7] |
由上龍嗣, 西嶋翔太, 井須小羊子ら. 平成30 (2018) 年度マサバ太平洋系群の資源評価[R]. 中央水産研究所, 2018: 4-8.
|
[8] |
渡邊千夏子. マサバ太平洋系群の繁殖特性の変化とその個体群動態への影響[J]. 水産海洋研究, 2010, 74: 46-50.
|
[9] |
西田宏, 川端淳, 目黒清美, ら. マサバとゴマサバの分布と回遊1−幼魚[J]. 水産海洋研究, 2001, 65(4): 201.
|
[10] |
目黒清美, 梨田一也, 三谷卓美. マサバとゴマサバの分布と回遊 (成魚)(総特集 マサバとゴマサバ太平洋系群−−漁業·資源·管理の現状と将来展望)[J]. 海洋, 2002, 34(4): 256-260.
|
[11] |
川崎健. マサバ太平洋系群未成魚の生態について[J]. 東海区水産研究所研究報告, 1968(55): 59-114.
|
[12] |
飯塚景記. 東北海区におけるマサバ未成魚の生態−3−八戸沖で越冬すると推定される魚群について[J]. 東北区水産研究所研究報告, 1974(33): 37-49.
|
[13] |
WATANABE C, YATSU A. Long-term changes in maturity at age of chub mackerel (Scomber japonicus) in relation to population declines in the waters off northeastern Japan[J]. Fish Res, 2006, 78(2-3): 323-332. doi: 10.1016/j.fishres.2006.01.001
|
[14] |
黒田一紀. 日本の太平洋沿岸域におけるさば属魚類の産卵期, 産卵場及び産卵量水準の動向[J]. 水産海洋研究, 1992, 56: 65-72.
|
[15] |
加藤充宏, 渡邊千夏子. マサバとゴマサバの成熟·産卵および食性 (総特集 マサバとゴマサバ太平洋系群——漁業·資源·管理の現状と将来展望)[J]. 海洋, 2002, 34(4): 266-272.
|
[16] |
庄之栋, 马超, 刘勇, 等. 北太平洋公海秋季鲐鱼生物学特性的初步研究[J]. 海洋湖沼通报, 2018(06): 125-131.
|
[17] |
薛嘉伦, 樊伟, 唐峰华, 等. 基于最大熵模型预测西北太平洋平洋公海鲐潜在栖息地分布[J]. 南方水产科学, 2018, 14(1): 92-98. doi: 10.3969/j.issn.20950780.2018.01.012
|
[18] |
田思泉, 陈新军. 不同名义CPUE计算法对 CPUE 标准化的影响[J]. 上海海洋大学学报, 2010, 19(2): 240-245.
|
[19] |
唐峰华, 崔雪森, 杨胜龙, 等. 海洋环境对中西太平洋金枪鱼围网渔场影响的 GIS 时空分析[J]. 南方水产科学, 2014, 10(2): 18-26. doi: 10.3969/j.issn.2095-0780.2014.02.003
|
[20] |
化成君, 张衡, 伍玉梅, 等. 中东太平洋金枪鱼延绳钓中心渔场的时空变化[J]. 生态学杂志, 2014, 33(5): 1243-1247.
|
[21] |
郑波, 陈新军, 李纲. GLM 和 GAM 模型研究东黄海鲐资源渔场与环境因子的关系[J]. 水产学报, 2008, 32(3): 379-386.
|
[22] |
AUSTIN M P, MEYERS J A. Current approaches to modelling the environmental niche of eucalypts: implication for management of forest biodiversity[J]. Forest Ecol Manag, 1996, 85(1/2/3): 95-106. doi: 10.1016/S0378-1127(96)03753-X
|
[23] |
周甦芳, 樊伟, 崔雪森, 等. 环境因子对东海区帆式张网主要渔获物渔获量影响[J]. 应用生态学报, 2004(9): 1637-1640. doi: 10.3321/j.issn:1001-9332.2004.09.030
|
[24] |
BELLIDO J M, PIERCE G J, WANG J. Modelling intra-annual variation in abundance of squid Loligo forbesi in Scottish waters using generalised additive models[J]. Fish Res, 2001, 52(1/2): 23-39. doi: 10.1016/S0165-7836(01)00228-4
|
[25] |
SWARTZMAN G, HUANG C, KALUZNY S. Spatial analysis of Bering Sea groundfish survey data using generalized additive models[J]. Can J Fish Aquat Sci, 1992, 49(7): 1366-1378. doi: 10.1139/f92-152
|
[26] |
Burnham K,Anderson D. Model Selection and Multimodel Inference: a practical information theoretic approach [M]. 2nd ed. New York: Springer, 2002: 267-347.
|
[27] |
戴澍蔚, 唐峰华, 樊伟. 北太平洋平洋公海日本鲭资源分布及其渔场环境特征[J]. 海洋渔业, 2017, 39(4): 372-382. doi: 10.3969/j.issn.1004-2490.2017.04.002
|
[28] |
朱国平, 李纲, 郑晓琼, 等. 东海鲐鱼资源时空分布特征[J]. 生态科学, 2011, 30(l): 1-7.
|
[29] |
唐峰华, 樊伟, 伍玉梅, 等. 北太平洋柔鱼渔场资源与海洋环境关系的季节性变化[J]. 农业资源与环境学报, 2015(3): 242-249.
|
[30] |
苏杭, 陈新军, 汪金涛. 海表水温变动对东、黄海鲐鱼栖息地分布的影响[J]. 海洋学报, 2015, 37(6): 88-96.
|
[31] |
袁小楠, 陈新军, 李纲. 黄海日本鲐灯光围网渔场重心年际变化及其与环境因子关系[J]. 广东海洋大学学报, 2016, 36(3): 110-114. doi: 10.3969/j.issn.1673-9159.2016.03.018
|
[32] |
王良明, 李渊, 张然, 等. 西北太平洋日本鲭资源丰度分布与表温和水温垂直结构的关系[J]. 中国海洋大学学报, 2019, 49(11): 29-38.
|