LIU Rui, LIANG Ying, YIN Doudou, SONG Chaodong, MO Zuqin, XIAO Junfeng, YI Han, ZHANG Hongyan, ZHANG Bin, SHEN Naikun. Screening, condition optimization and preliminary application of nitrite degrading Bacillus velezensis GXMZU-B1[J]. South China Fisheries Science, 2024, 20(4): 133-143. DOI: 10.12131/20240013
Citation: LIU Rui, LIANG Ying, YIN Doudou, SONG Chaodong, MO Zuqin, XIAO Junfeng, YI Han, ZHANG Hongyan, ZHANG Bin, SHEN Naikun. Screening, condition optimization and preliminary application of nitrite degrading Bacillus velezensis GXMZU-B1[J]. South China Fisheries Science, 2024, 20(4): 133-143. DOI: 10.12131/20240013

Screening, condition optimization and preliminary application of nitrite degrading Bacillus velezensis GXMZU-B1

More Information
  • Received Date: January 17, 2024
  • Revised Date: April 06, 2024
  • Accepted Date: April 22, 2024
  • Available Online: April 28, 2024
  • To address the problem of elevated nitrite level in high-density intensive aquaculture process, and obtain probiotics that can effectively degrade nitrite, we sampled shrimps from the shrimp pond in Fangchenggang, Guangxi. First, the strains with the best nitrite degradation effect were selected by preliminary screening on methylene blue plate and calcium carbonate medium plate, and secondary screening on nitrite and nitrate medium. Then the strains were identified by morphology, physiological and biochemical characteristics as well as 16S rRNA phylogenetic tree. Furthermore, the fermentation temperature, initial pH and inorganic salts of the strains were optimized. Finally, the safety of the strain and the nitrite degradation capacity in high-concentration nitrite aquaculture tailwater by the strain were studied. The results show that the strain GXMZU-B1 with a degradation efficiency of 98% was obtained from the 53 strains which were from the preliminary screening, and was identified as Bacillus velezensis GXMZU-B1. The optimal nitrite degradation conditions of the strain GXMZU-B1 were 30 ℃, pH 6−7, and no addition of inorganic salt ions. Under these conditions, the degradation rate of nitrite peaked after 12 h, up to 98% in 0.5 g·L−1 NaNO2. The strain was used in the aquaculture tailwater with nitrite concentration (28.73±1.08) mg·L−1, and the tailwater nitrite could be completely degraded after 24 h. The safety test of the strain shows that the strain did not produce hemolytic circle on the blood AGAR plate. The drug sensitivity test shows that the strain had awesome antibiotic sensitivity. In summary, B. velezensis GXMZU-B1 can be used in aquaculture to keep the content of nitrite low and maintain the normal growth of aquatic animals. It provides a new way to solve the problem of nitrite accumulation in the process of high-density aquaculture, which has significant economic and ecological values.

  • [1]
    方成, 黎兰诗, 梁震宇, 等. 不同浓度亚硝酸盐亚急性胁迫对凡纳滨对虾生长与免疫功能的影响[J]. 渔业科学进展, 2022, 43(4): 180-189.
    [2]
    刘玉廷, 刘文舒, 杨天俊, 等. 一株亚硝酸盐降解菌的分离鉴定及其降解特性[J]. 水产学报, 2019, 43(4): 1171-1180.
    [3]
    KAMSTRA A, SPAN J A, WEERD J H V. The acute toxicity and sublethal effects of nitrite on growth and feed utilization of European eel, Anguilla anguilla (L.)[J]. Aquac Res, 1996, 27(12): 903-911. doi: 10.1111/j.1365-2109.1996.tb01250.x
    [4]
    GUO H, XIAN J A, LI B, et al. Gene expression of apoptosis-related genes, stress protein and antioxidant enzymes in hemocytes of white shrimp Litopenaeus vannamei under nitrite stress[J]. Comp Biochem Phys C, 2013, 157(4): 366-371.
    [5]
    TOMASSO J R, DAVIS K B, SIMCO B A. Plasma corticosteroid dynamics in channel catfish (Ictalurus punctatus) exposed to ammonia and nitrite[J]. Can J Fish Aquat Sci, 1981, 38(9): 1106-1112. doi: 10.1139/f81-150
    [6]
    杨丽萍, 郭红会, 杨慧, 等. 慢性亚硝酸盐暴露引起雄性斑马鱼脑神经递质紊乱及行为异常[J]. 生态毒理学报, 2022, 17(5): 325-338. doi: 10.7524/AJE.1673-5897.20211026005
    [7]
    ROMANO N, ZENG C. Toxic effects of ammonia, nitrite, and nitrate to decapod crustaceans: a review on factors influencing their toxicity, physiological consequences, and coping mechanisms[J]. Rev Fish Sci, 2013, 21(1): 1-21. doi: 10.1080/10641262.2012.753404
    [8]
    KROUPOVÁ H K, VALENTOVÁ O, SVOBODOVÁ Z, et al. Toxic effects of nitrite on freshwater organisms: a review[J]. Rev Aquac, 2018, 10(3): 525-542. doi: 10.1111/raq.12184
    [9]
    HU Z, LEE J W, CHANDRAN K, et al. Nitrous oxide (N2O) emission from aquaculture: a review[J]. Environ Sci Technol, 2012, 46(12): 6470-6480. doi: 10.1021/es300110x
    [10]
    梁前才, 李长秀, 林清友, 等. 复合菌剂对渔业养殖水体中亚硝酸氮的降解研究[J]. 广东石油化工学院学报, 2018, 28(4): 32-36. doi: 10.3969/j.issn.2095-2562.2018.04.008
    [11]
    SCHRAM E, ROQUES J A C, ABBINK W, et al. The impact of elevated water nitrate concentration on physiology, growth and feed intake of African catfish Clarias gariepinus (Burchell 1822)[J]. Aquac Res, 2014, 45(9): 1499-1511. doi: 10.1111/are.12098
    [12]
    端国超, 阎明军, 陈修报, 等. 背角无齿蚌对养殖水体亚硝酸盐氮的净化效果[J]. 渔业现代化, 2023, 50(5): 52-59. doi: 10.3969/j.issn.1007-9580.2023.05.007
    [13]
    KARTHIK R, PUSHPAM A, CHELVAN Y, et al. Efficacy of probiotic and nitrifier bacterial consortium for the enhancement of Litopenaeus Vannamei aquaculture[J]. Int J Vet Sci Med, 2016, 2(1): 1-6.
    [14]
    周敏, 宁文, 陈红菊, 等. 降解亚硝酸盐的大山芽孢杆菌JY-1的分离、鉴定及其作用[J]. 中国水产科学, 2022, 29(2): 284-294. doi: 10.12264/JFSC2021-0362
    [15]
    LIANG Q, ZHANG X, LEE K H, et al. Nitrogen removal and water microbiota in grass carp culture following supplementation with Bacillus licheniformis BSK-4[J]. World J Microbiol Biotechnol, 2015, 31(11): 1711-1718. doi: 10.1007/s11274-015-1921-3
    [16]
    FU W L, WANG Q, CHEN S H, et al. Isolation and identification of an efficient aerobic denitrifying Pseudomonas stutzeri strain and characterization of its nitrite degradation[J]. Catalysts, 2021, 11(10): 1214. doi: 10.3390/catal11101214
    [17]
    王艺雅, 张其中. 一株光合细菌的分离鉴定及该菌对氨氮和亚硝态氮的去除作用[J]. 微生物学通报, 2019, 46(10): 2512-2528.
    [18]
    孙全敏, 迟雪梅, 马明昊, 等. 一种筛选高效降解亚硝酸盐海洋低温细菌的方法[J]. 中国食品添加剂, 2022, 33(4): 129-135.
    [19]
    闫坤朋, 牛成洁, 宋志文, 等. 重氮偶联法测定水中亚硝酸盐氮的改进[J]. 中国环境监测, 2018, 34(3): 118-122.
    [20]
    余海兰, 方京京. 高效液相色谱法同步测定蔬菜中硝酸盐和亚硝酸盐含量[J]. 湖南农业科学, 2010(7): 97-99. doi: 10.3969/j.issn.1006-060X.2010.07.030
    [21]
    徐力文, 冯娟, 刘广锋. 水产病原菌抗菌药物敏感试验标准化探讨[J]. 微生物学通报, 2005(4): 134-139.
    [22]
    隋炜金, 王鸿霞, 刘保忠. 文蛤浮游期发病幼虫细菌群落分析和致病菌的分离鉴定[J]. 水产学报, 2023, 47(6): 156-164.
    [23]
    成钰, 李秋芬, 费聿涛, 等. 海水异养硝化−好氧反硝化芽孢杆菌SLWX2的筛选及脱氮特性[J]. 环境科学, 2016, 37(7): 2681-2688.
    [24]
    宋君, 赵坤, 田相利, 等. 不同环境因子和碳氮源对短小芽孢杆菌BP-171无机氮降解特性的影响[J]. 中国海洋大学学报(自然科学版), 2019, 49(1): 34-42.
    [25]
    王安利, 郑桂丽, 廖绍安, 等. 虾池中具有降解硝酸盐或亚硝酸盐能力的细菌多样性[J]. 生态学报, 2007(5): 1937-1944. doi: 10.3321/j.issn:1000-0933.2007.05.033
    [26]
    HUI C, WEI R, JIANG H, et al. Characterization of the ammonification, the relevant protease production and activity in a high-efficiency ammonifier Bacillus amyloliquefaciens DT[J]. Int Biodeter Biodegr, 2019, 142: 11-17. doi: 10.1016/j.ibiod.2019.04.009
    [27]
    BARMAN P, BANDYOPADHYAY P, KATI A, et al. Characterization and strain improvement of aerobic denitrifying EPS producing bacterium Bacillus cereus PB88 for shrimp water quality management[J]. Waste Biomass Valori, 2018, 9(8): 1319-1330. doi: 10.1007/s12649-017-9912-2
    [28]
    KUYPERS M M M, MARCHANT H K, KARTAL B. The microbial nitrogen-cycling network[J]. Nat Rev Microbiol, 2018, 16(5): 263-276. doi: 10.1038/nrmicro.2018.9
    [29]
    徐煜, 胡晓娟, 张淞, 等. 5种因子对赤红球菌HDRR2Y去除氨氮和亚硝酸盐效应的影响[J]. 南方水产科学, 2023, 19(1): 67-74. doi: 10.12131/20220044
    [30]
    GUO X, LIU B F, GAO L, et al. Isolation of nitrite-degrading strains from Douchi and their application to degrade high nitrite in Jiangshui[J]. J Sci Food Agr, 2019, 99(1): 219-225. doi: 10.1002/jsfa.9163
    [31]
    王一茜, 荣金诚, 王晓辉, 等. 常见乳酸菌降解亚硝酸盐机理探讨[J]. 食品与发酵工业, 2019, 45(8): 50-56.
    [32]
    TOMITA S. NMR- and GC/MS-based metabolomic characterization of sunki, an unsalted fermented pickle of turnip leaves[J]. Food Chem, 2018, 258: 25-34. doi: 10.1016/j.foodchem.2018.03.038
    [33]
    HUANG Y Y, LIANG M H, ZHAO S, et al. Isolation, expression, and biochemical characterization: nitrite reductase from Bacillus cereus LJ01[J]. RSC Adv, 2020, 10(62): 37871-37882. doi: 10.1039/D0RA06129H
    [34]
    刘玮, 邱崇顺, 何宇星, 等. 降解亚硝酸盐乳杆菌的筛选鉴定及其NiRs酶学性质[J]. 食品研究与开发, 2022, 43(13): 164-171. doi: 10.12161/j.issn.1005-6521.2022.13.024
    [35]
    杨斌, 张晨晓, 钟秋平, 等. 钦州湾表层海水温度盐度及pH值时空变化[J]. 钦州学院学报, 2012, 27(3): 1-5. doi: 10.3969/j.issn.1673-8314.2012.03.001
    [36]
    黄子眉, 李小维. 广西沿海海水表层温度分析[J]. 广西科学, 2008, 15(4): 456-460. doi: 10.3969/j.issn.1005-9164.2008.04.035
    [37]
    陈薇, 丁祥力, 贺月林, 等. 亚硝酸盐降解菌的分离鉴定及其降解特性[J]. 环境科学与技术, 2011, 34(S2): 37-41.
    [38]
    申云鑫, 施竹凤, 李铭刚, 等. 贝莱斯芽孢杆菌SH-1471发酵条件优化及其番茄枯萎病的防治效果[J]. 微生物学报, 2024, 64(1): 220-237.
    [39]
    刘涵斐, 李锡宏, 徐婷婷, 等. 贝莱斯芽孢杆菌F85拮抗烟草炭疽菌的转录组学分析[J]. 中国烟草学报, 2024, 30(1): 72-82.
    [40]
    项佳胤, 商桑, 田丽波. 贝莱斯芽孢杆菌N46对苦瓜白粉病的防治机理研究[J/OL]. 热带作物学报: 1-17. DOI: http://kns.cnki.net/kcms/detail/46.1019.S.20230629.1530.002.html.
    [41]
    付欢, 李亚婷, 肖贵谦, 等. 贝莱斯芽孢杆菌(Bacillus velezensis) MCCC 1A15695抑菌蛋白分离纯化及应用研究[J/OL]. 应用海洋学学报: 1-10. DOI: http://kns.cnki.net/kcms/detail/35.1319.P.20230915.0801.002.html.
    [42]
    李张婵, 施慧, 许文军, 等. 大黄鱼内脏白点病病原拮抗菌的分离鉴定及生物学特性研究[J]. 南方水产科学, 2023, 19(3): 78-87. doi: 10.12131/20220251
    [43]
    孟文蓉, 米浩宇, 黄怡忱, 等. 贝莱斯芽孢杆菌MSP05对泥鳅生长、消化及免疫的影响[J]. 水产科学, 2023, 42(4): 712-718.
    [44]
    孙瑞彬, 白慧颖, 袁春营, 等. 一株高效去除亚硝酸盐菌株的筛选鉴定与分子特征分析[J/OL]. 水生态学杂志: 1-10. DOI: https://doi.org/10.15928/j.1674-3075.202302220052.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return