ZHANG Guilin, ZHANG Yating, JIANG Hong, LIU Zhen, MAO Xiangzhao. Metabolic engineering synthesis of neoxanthin, a key precursor of fucoxanthin[J]. South China Fisheries Science, 2022, 18(2): 57-65. DOI: 10.12131/20210316
Citation: ZHANG Guilin, ZHANG Yating, JIANG Hong, LIU Zhen, MAO Xiangzhao. Metabolic engineering synthesis of neoxanthin, a key precursor of fucoxanthin[J]. South China Fisheries Science, 2022, 18(2): 57-65. DOI: 10.12131/20210316

Metabolic engineering synthesis of neoxanthin, a key precursor of fucoxanthin

More Information
  • Received Date: October 28, 2021
  • Revised Date: January 13, 2022
  • Accepted Date: January 19, 2022
  • Available Online: February 06, 2022
  • Fucoxanthin is one of the common luteins in marine algae, especially in brown algae, which has antibacterial, anti-inflammatory, anti-obesity, anti-diabetes, anti-cancer, regulating intestinal flora, anti-organ fibrosis and other physiological activities. Neoxanthin is a possible precursor of fucoxanthin. In this paper, we constructed a neoxanthin synthesis pathway in Escherichia coli for the first time and the plasmid pTrc99a-crtEBIYZ, which carries five genes (crtE, crtB, crtI, crtY and crtZ) from Pantoea ananatis, and codes for proteins (geranylgeranyl pyrophosphate synthase, phytoene synthase, lycopene cyclase and β-carotene hydroxylase). We transferred the plasmid into E. coli, and obtained the zeaxanthin-producing E. coli BL21 pTrc99a-crtEBIYZ. The yield of zeaxanthin (dry cell mass) was 0.70 mg·g−1. We obtained E. coli pTrc99a-crtEBIYZ pACYCDuet-1-QZEP3 strain by transferring ZEP3 gene from Phaeodactylum tricornutum without signal peptide, and obtained E. coli BL21 NEO successfully by transferring the neoxanthin synthase gene NSY into E. coli BL21 pTrc99a-crtEBIYZ pACYCDuet-1-QZEP3. The concentrations of neoxanthin, violaxanthin and zeaxanthin were 99.27, 150.30 and 119.77 μg·g−1 dry cell mass, respectively.
  • [1]
    GELZINIS A, BUTKUS V, SONGAILA E, et al. Mapping energy transfer channels in fucoxanthin-chlorophyll protein complex[J]. Biochim Biophys Acta, 2015, 1847(2): 241-247. doi: 10.1016/j.bbabio.2014.11.004
    [2]
    KARPINSKI T M, ADAMCZAK A. Fucoxanthin-an antibacterial carotenoid[J]. Antioxidants, 2019, 8(8): 1-8.
    [3]
    MIYASHITA K, HOSOKAWA M. Fucoxanthin in the management of obesity and its related disorders[J]. J Funct Foods, 2017, 36: 195-202. doi: 10.1016/j.jff.2017.07.009
    [4]
    WANG J, MA Y H, YANG J S, et al. Fucoxanthin inhibits tumour-related lymphangiogenesis and growth of breast cancer[J]. J Cell Mol Med, 2019, 23(3): 2219-2229. doi: 10.1111/jcmm.14151
    [5]
    XIAO H, ZHAO J R, FANG C, et al. Advances in studies on the pharmacological activities of fucoxanthin[J]. Mar Drugs, 2020, 18(12): 1-20.
    [6]
    YE G L, WANG L L, YANG K, et al. Fucoxanthin may inhibit cervical cancer cell proliferation via downregulation of HIST1H3D[J]. J Int Med Res, 2020, 48(10): 1-14.
    [7]
    GUO B B, LIU B, YANG B, et al. Screening of diatom strains and characterization of Cyclotella cryptica as a potential fucoxanthin producer[J]. Mar Drugs, 2016, 14(7): 1-14.
    [8]
    WU H L, LI T, WANG G H, et al. A comparative analysis of fatty acid composition and fucoxanthin content in six Phaeodactylum tricornutum strains from diff erent origins[J]. Chin J Oceanol Limnol, 2016, 34(2): 391-398. doi: 10.1007/s00343-015-4325-1
    [9]
    王丽娟. 三角褐指藻高含岩藻黄质突变株的高通量筛选及评价 [D]. 青岛: 青岛大学, 2018: 3-5.
    [10]
    章丽, 龚一富, 朱帅旗, 等. 乙酰水杨酸对三角褐指藻岩藻黄质含量的影响及其分子机理研究[J]. 核农学报, 2020, 34(7): 1432-1439. doi: 10.11869/j.issn.100-8551.2020.07.1432
    [11]
    张南南, 罗玲, 陈卓, 等. 三角褐指藻岩藻黄素合成途径及其关键基因对高光照的响应[J]. 中国油料作物学报, 2017, 39(1): 128-136. doi: 10.7505/j.issn.1007-9084.2017.01.020
    [12]
    朱帅旗, 龚一富, 刘浩, 等. 硫酸铈铵对三角褐指藻岩藻黄素含量的影响及转录差异研究[J]. 中国稀土学报, 2014, 32(6): 750-757.
    [13]
    邹丽秋, 匡雪君, 孙超, 等. 天然产物生物合成途径解析策略[J]. 中国中药杂志, 2016, 41(22): 4119-4123.
    [14]
    MIKAMI K, HOSOKAWA M. Biosynthetic pathway and health benefits of fucoxanthin, an algae-specific xanthophyll in brown seaweeds[J]. Int J Mol Sci, 2013, 14(7): 13763-13781. doi: 10.3390/ijms140713763
    [15]
    郭静, 曹玉锦, 咸漠, 等. 大肠杆菌生产异戊二烯的代谢工程研究进展[J]. 生物工程学报, 2016, 32(8): 1026-1037.
    [16]
    LI Z J, WANG Y Z, WANG L R, et al. Advanced strategies for the synthesis of terpenoids in Yarrowia lipolytica[J]. J Agric Food Chem, 2021, 69(8): 2367-2381. doi: 10.1021/acs.jafc.1c00350
    [17]
    WANG Q, QUAN S, XIAO H. Towards efficient terpenoid biosynthesis: manipulating IPP and DMAPP supply[J]. Bioresour Bioprocess, 2019, 6(6): 1-13.
    [18]
    王丽平, 谌琴琴, 梁瑾, 等. 千里光法尼基焦磷酸合酶基因的克隆及功能鉴定[J]. 中国中药杂志, 2020, 45(23): 5677-5685.
    [19]
    LI X R, TIAN G Q, SHEN H J, et al. Metabolic engineering of Escherichia coli to produce zeaxanthin[J]. J Ind Microbiol Biotechnol, 2015, 42(4): 627-636. doi: 10.1007/s10295-014-1565-6
    [20]
    CATALDO V F, ARENAS N, SALGADO V, et al. Heterologous production of the epoxycarotenoid violaxanthin in Saccharomyces cerevisiae[J]. Metab Eng, 2020, 59: 53-63. doi: 10.1016/j.ymben.2020.01.006
    [21]
    BOUVIER F, D'HARLINGUE A, BACKHAUS R A, et al. Identification of neoxanthin synthase as a carotenoid cyclase paralog[J]. Eur J Biochem, 2000, 267(21): 6346-6352. doi: 10.1046/j.1432-1327.2000.01722.x
    [22]
    武陶, 张柏林, 毕昌昊. 细胞膜合成途径模块化调控与形态改造提高大肠杆菌β-胡萝卜素的积累与产量[J]. 生物工程学报, 2018, 34(5): 703-711.
    [23]
    颜少宾, 张妤艳, 马瑞娟, 等. 桃果实类胡萝卜素测定方法的研究[J]. 果树学报, 2012, 29(6): 1127-1133.
    [24]
    王小龙, 郁继华, 吴天珍, 等. 辣椒叶片中新黄质、紫黄质组分分离及含量的测定方法[J]. 吉林农业大学学报, 2015, 37(3): 307-312.
    [25]
    GAO S, TONG Y, ZHU L, et al. Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production[J]. Metab Eng, 2017, 41: 192-201. doi: 10.1016/j.ymben.2017.04.004
    [26]
    SHEN H J, CHENG B Y, ZHANG Y M, et al. Dynamic control of the mevalonate pathway expression for improved zeaxanthin production in Escherichia coli and comparative proteome analysis[J]. Metab Eng, 2016, 38: 180-190. doi: 10.1016/j.ymben.2016.07.012
    [27]
    李哲. 酿酒酵母和大肠杆菌的启动子特性及其代谢工程应用研究 [D]. 北京: 北京理工大学, 2015: 2-4.
    [28]
    杨帆, 苏卜利, 王永红, 等. 启动子对重组大肠杆菌合成番茄红素能力的影响[J]. 食品与发酵工业, 2020, 46(17): 27-32.
    [29]
    王岩岩, 邢建民, 陈红歌. β-胡萝卜素合成的代谢工程研究进展[J]. 生物工程学报, 2017, 33(4): 578-590.
    [30]
    CHANG J M, CHEN W C, HONG D J, et al. The inhibition of dmba-induced carcinogenesis by neoxanthin in hamster buccal pouch[J]. Nutr Cancer, 1995, 24(3): 325-333. doi: 10.1080/01635589509514421
    [31]
    MASARU T, AKIRA A, HONG Z, et al. A highly polar xanthophyll of 9'-cis-neoxanthin induces apoptosis in HCT116 human colon cancer cells through mitochondrial dysfunction[J]. Mol Cell Biochem, 2007, 300(1/2): 227-237.
    [32]
    EIICHI K N, AKIRA A, AKIHIKO N. Neoxanthin and fucoxanthin induce apoptosis in PC-3 human prostate cancer cells[J]. Cancer Lett, 2005, 220(1): 75-84. doi: 10.1016/j.canlet.2004.07.048

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return