Citation: | ZHANG Guilin, ZHANG Yating, JIANG Hong, LIU Zhen, MAO Xiangzhao. Metabolic engineering synthesis of neoxanthin, a key precursor of fucoxanthin[J]. South China Fisheries Science, 2022, 18(2): 57-65. DOI: 10.12131/20210316 |
[1] |
GELZINIS A, BUTKUS V, SONGAILA E, et al. Mapping energy transfer channels in fucoxanthin-chlorophyll protein complex[J]. Biochim Biophys Acta, 2015, 1847(2): 241-247. doi: 10.1016/j.bbabio.2014.11.004
|
[2] |
KARPINSKI T M, ADAMCZAK A. Fucoxanthin-an antibacterial carotenoid[J]. Antioxidants, 2019, 8(8): 1-8.
|
[3] |
MIYASHITA K, HOSOKAWA M. Fucoxanthin in the management of obesity and its related disorders[J]. J Funct Foods, 2017, 36: 195-202. doi: 10.1016/j.jff.2017.07.009
|
[4] |
WANG J, MA Y H, YANG J S, et al. Fucoxanthin inhibits tumour-related lymphangiogenesis and growth of breast cancer[J]. J Cell Mol Med, 2019, 23(3): 2219-2229. doi: 10.1111/jcmm.14151
|
[5] |
XIAO H, ZHAO J R, FANG C, et al. Advances in studies on the pharmacological activities of fucoxanthin[J]. Mar Drugs, 2020, 18(12): 1-20.
|
[6] |
YE G L, WANG L L, YANG K, et al. Fucoxanthin may inhibit cervical cancer cell proliferation via downregulation of HIST1H3D[J]. J Int Med Res, 2020, 48(10): 1-14.
|
[7] |
GUO B B, LIU B, YANG B, et al. Screening of diatom strains and characterization of Cyclotella cryptica as a potential fucoxanthin producer[J]. Mar Drugs, 2016, 14(7): 1-14.
|
[8] |
WU H L, LI T, WANG G H, et al. A comparative analysis of fatty acid composition and fucoxanthin content in six Phaeodactylum tricornutum strains from diff erent origins[J]. Chin J Oceanol Limnol, 2016, 34(2): 391-398. doi: 10.1007/s00343-015-4325-1
|
[9] |
王丽娟. 三角褐指藻高含岩藻黄质突变株的高通量筛选及评价 [D]. 青岛: 青岛大学, 2018: 3-5.
|
[10] |
章丽, 龚一富, 朱帅旗, 等. 乙酰水杨酸对三角褐指藻岩藻黄质含量的影响及其分子机理研究[J]. 核农学报, 2020, 34(7): 1432-1439. doi: 10.11869/j.issn.100-8551.2020.07.1432
|
[11] |
张南南, 罗玲, 陈卓, 等. 三角褐指藻岩藻黄素合成途径及其关键基因对高光照的响应[J]. 中国油料作物学报, 2017, 39(1): 128-136. doi: 10.7505/j.issn.1007-9084.2017.01.020
|
[12] |
朱帅旗, 龚一富, 刘浩, 等. 硫酸铈铵对三角褐指藻岩藻黄素含量的影响及转录差异研究[J]. 中国稀土学报, 2014, 32(6): 750-757.
|
[13] |
邹丽秋, 匡雪君, 孙超, 等. 天然产物生物合成途径解析策略[J]. 中国中药杂志, 2016, 41(22): 4119-4123.
|
[14] |
MIKAMI K, HOSOKAWA M. Biosynthetic pathway and health benefits of fucoxanthin, an algae-specific xanthophyll in brown seaweeds[J]. Int J Mol Sci, 2013, 14(7): 13763-13781. doi: 10.3390/ijms140713763
|
[15] |
郭静, 曹玉锦, 咸漠, 等. 大肠杆菌生产异戊二烯的代谢工程研究进展[J]. 生物工程学报, 2016, 32(8): 1026-1037.
|
[16] |
LI Z J, WANG Y Z, WANG L R, et al. Advanced strategies for the synthesis of terpenoids in Yarrowia lipolytica[J]. J Agric Food Chem, 2021, 69(8): 2367-2381. doi: 10.1021/acs.jafc.1c00350
|
[17] |
WANG Q, QUAN S, XIAO H. Towards efficient terpenoid biosynthesis: manipulating IPP and DMAPP supply[J]. Bioresour Bioprocess, 2019, 6(6): 1-13.
|
[18] |
王丽平, 谌琴琴, 梁瑾, 等. 千里光法尼基焦磷酸合酶基因的克隆及功能鉴定[J]. 中国中药杂志, 2020, 45(23): 5677-5685.
|
[19] |
LI X R, TIAN G Q, SHEN H J, et al. Metabolic engineering of Escherichia coli to produce zeaxanthin[J]. J Ind Microbiol Biotechnol, 2015, 42(4): 627-636. doi: 10.1007/s10295-014-1565-6
|
[20] |
CATALDO V F, ARENAS N, SALGADO V, et al. Heterologous production of the epoxycarotenoid violaxanthin in Saccharomyces cerevisiae[J]. Metab Eng, 2020, 59: 53-63. doi: 10.1016/j.ymben.2020.01.006
|
[21] |
BOUVIER F, D'HARLINGUE A, BACKHAUS R A, et al. Identification of neoxanthin synthase as a carotenoid cyclase paralog[J]. Eur J Biochem, 2000, 267(21): 6346-6352. doi: 10.1046/j.1432-1327.2000.01722.x
|
[22] |
武陶, 张柏林, 毕昌昊. 细胞膜合成途径模块化调控与形态改造提高大肠杆菌β-胡萝卜素的积累与产量[J]. 生物工程学报, 2018, 34(5): 703-711.
|
[23] |
颜少宾, 张妤艳, 马瑞娟, 等. 桃果实类胡萝卜素测定方法的研究[J]. 果树学报, 2012, 29(6): 1127-1133.
|
[24] |
王小龙, 郁继华, 吴天珍, 等. 辣椒叶片中新黄质、紫黄质组分分离及含量的测定方法[J]. 吉林农业大学学报, 2015, 37(3): 307-312.
|
[25] |
GAO S, TONG Y, ZHU L, et al. Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production[J]. Metab Eng, 2017, 41: 192-201. doi: 10.1016/j.ymben.2017.04.004
|
[26] |
SHEN H J, CHENG B Y, ZHANG Y M, et al. Dynamic control of the mevalonate pathway expression for improved zeaxanthin production in Escherichia coli and comparative proteome analysis[J]. Metab Eng, 2016, 38: 180-190. doi: 10.1016/j.ymben.2016.07.012
|
[27] |
李哲. 酿酒酵母和大肠杆菌的启动子特性及其代谢工程应用研究 [D]. 北京: 北京理工大学, 2015: 2-4.
|
[28] |
杨帆, 苏卜利, 王永红, 等. 启动子对重组大肠杆菌合成番茄红素能力的影响[J]. 食品与发酵工业, 2020, 46(17): 27-32.
|
[29] |
王岩岩, 邢建民, 陈红歌. β-胡萝卜素合成的代谢工程研究进展[J]. 生物工程学报, 2017, 33(4): 578-590.
|
[30] |
CHANG J M, CHEN W C, HONG D J, et al. The inhibition of dmba-induced carcinogenesis by neoxanthin in hamster buccal pouch[J]. Nutr Cancer, 1995, 24(3): 325-333. doi: 10.1080/01635589509514421
|
[31] |
MASARU T, AKIRA A, HONG Z, et al. A highly polar xanthophyll of 9'-cis-neoxanthin induces apoptosis in HCT116 human colon cancer cells through mitochondrial dysfunction[J]. Mol Cell Biochem, 2007, 300(1/2): 227-237.
|
[32] |
EIICHI K N, AKIRA A, AKIHIKO N. Neoxanthin and fucoxanthin induce apoptosis in PC-3 human prostate cancer cells[J]. Cancer Lett, 2005, 220(1): 75-84. doi: 10.1016/j.canlet.2004.07.048
|