Citation: | XIAO Yan, WANG Lu, WANG Sen, CONG Peihu, LU Dong, FENG Yingang, CUI Qiu, SONG Xiaojin. Mutation and selection of high squalene production yeast Pseudozyma sp. induced by carbon-ions beam irradiation and its electrotransfor-mation[J]. South China Fisheries Science, 2022, 18(2): 98-104. DOI: 10.12131/20210294 |
[1] |
HILL R A, CONNOLLY J D. Triterpenoids[J]. Nat Prod Rep, 2018, 35(12): 1294-1329. doi: 10.1039/C8NP00029H
|
[2] |
POPA O, BĂBEANU N E, POPA I, et al. Methods for obtaining and determination of squalene from natural sources[J]. Biomed Res Int, 2015, 2015: 367202-367217.
|
[3] |
LOU-BONAFONTE J M, MARTÍNEZ-BEAMONTE R, SANCLEMENTE T, et al. Current insights into the biological action of squalene[J]. Mol Nutr Food Res, 2018, 62(15): 1800136-1800151. doi: 10.1002/mnfr.201800136
|
[4] |
TETALI S D. Terpenes and isoprenoids: a wealth of compounds for global use[J]. Planta, 2019, 249(1): 1-8. doi: 10.1007/s00425-018-3056-x
|
[5] |
GARAIOVA M, HAPALA I. Squalene: from traditional medicine to modern applications[J]. Chem Listy, 2018, 112(7): 427-433.
|
[6] |
甘桢, 王蓓, 鲁义善, 等. 罗非鱼免疫学研究进展[J]. 生物技术通报, 2014(11): 32-39.
|
[7] |
EMBREGTS W E C, FORLENZA M. Oral vaccination of fish: lessons from humans and veterinary species[J]. Dev Comp Immunol, 2016, 64: 118-137.
|
[8] |
杨思静, 刘小芳, 刘建志, 等. 不同品种鲨鱼肝脂质组成特征分析[J]. 食品工业科技, 2020, 41(12): 307-312.
|
[9] |
GOHIL N, BHATTACHARJEE G, KHAMBHATI K, et al. Engineering strategies in microorganisms for the enhanced production of squalene: advances, challenges and opportunities[J]. Front Bioeng Biotech, 2019, 7: 1-24. doi: 10.3389/fbioe.2019.00050
|
[10] |
HAN J Y, SEO S H, SONG J M, et al. High-level recombinant production of squalene using selected Saccharomyces cerevisiae strains[J]. J Ind Microbiol Biotechnol, 2018, 45(4): 239-251. doi: 10.1007/s10295-018-2018-4
|
[11] |
HOANG M H, HA N C, THOM L T, et al. Extraction of squalene as value-added product from the residual biomass of Schizochytrium mangrovei PQ6 during biodiesel producing process[J]. J Biosci Bioeng, 2014, 118(6): 632-639.
|
[12] |
SONG X J, WANG X L, TAN Y Z, et al. High production of squalene using a newly isolated yeast-like strain Pseudozyma sp. SD301[J]. J Agric Food Chem, 2015, 63(38): 8445-8451. doi: 10.1021/acs.jafc.5b03539
|
[13] |
ENGLUND E, PATTANAIK B, UBHAYASEKERA S J K, et al. Production of squalene in Synechocystis sp. PCC 6803[J]. PLoS ONE, 2014, 9(3): e90270. doi: 10.1371/journal.pone.0090270
|
[14] |
陈积红, 胡伟, 李文建. 重离子束辐照在优良工业微生物新菌株创建中的应用实践[J]. 生物产业技术, 2017(1): 46-50.
|
[15] |
郭晓鹏. 基于酿酒酵母模型的重离子束辐射诱变机理及线粒体相关功能研究[D]. 兰州: 中国科学院近代物理研究所, 2020: 39-41.
|
[16] |
CHENG Y R, SUN Z J, CUI G Z, et al. A new strategy for strain improvement of Aurantiochytrium sp. based on heavy-ions mutagenesis and synergistic effects of cold stress and inhibitors of enoyl-ACP reductase[J]. Enzyme Microb Technol, 2016, 93/94: 182-190. doi: 10.1016/j.enzmictec.2016.08.019
|
[17] |
LIU G S, LI T, ZHOU W, et al. The yeast peroxisome: a dynamic storage depot and subcellular factory for squalene overproduction[J]. Metab Eng, 2020, 57: 151-161. doi: 10.1016/j.ymben.2019.11.001
|
[18] |
MARCHAND G, FORTIER E, NEVEU B, et al. Alternative methods for genetic transformation of Pseudozyma antarctica, a basidiomycetous yeast-like fungus[J]. J Microbiol Methods, 2007, 70(3): 519-527. doi: 10.1016/j.mimet.2007.06.014
|
[19] |
KONISHI M, YOSHIDA Y, IKARASHI M, et al. Efficient and simple electro-transformation of intact cells for the basidiomycetous fungus Pseudozyma hubeiensis[J]. Biotechnol Lett, 2015, 37(8): 1679-1685. doi: 10.1007/s10529-015-1837-x
|
[20] |
MORITA T, HABE H, FUKUOKA T, et al. Convenient transformation of anamorphic Basidiomycetous yeasts belonging to genus Pseudozyma induced by electroporation[J]. J Biosci Bioeng, 2007, 104(6): 517-520. doi: 10.1263/jbb.104.517
|
[21] |
LAN C Z, WANG Z J, WANG Z, et al. Optimizing eicosapentaenoic acid production by grafting a heterologous polyketide synthase pathway in the Thraustochytrid aurantiochytrium[J]. J Agric Food Chem, 2020, 68(40): 11253-11260. doi: 10.1021/acs.jafc.0c04299
|
[22] |
CHANG M H, KIM H J, JAHNG K Y, et al. The isolation and characterization of Pseudozyma sp. JCC 207, a novel producer of squalene[J]. Appl Microbiol Biotechnol, 2008, 78(6): 963-972. doi: 10.1007/s00253-008-1395-4
|
[23] |
王冬平. 代谢工程改造解脂耶氏酵母提高角鲨烯产量的研究[D]. 长沙: 湖南农业大学, 2020: 35.
|
[24] |
王均华. 酿酒酵母萜类化合物高效合成菌株的构建与代谢调控[D]. 无锡: 江南大学, 2021: 34.
|
[25] |
李宁, 刘波, 刁梦雪, 等. 产角鲨烯细胞工厂的构建及关键基因的筛选、克隆与表达[J]. 生物工程学报, 2021, 37(8): 2813-2824.
|
[26] |
KAYA K, NAKAZAWA A, MATSUURA H, et al. Thraustochytrid Aurantiochytrium sp. 18W-13a accummulates high amounts of squalene[J]. Biosci Biotechnol Biochem, 2011, 75(11): 2246-2248. doi: 10.1271/bbb.110430
|
[27] |
RAU E M, BARTOSOVA Z, KRISTIANSEN K A, et al. Overexpression of two new acyl-coa: diacylglycerol acyltransferase 2-like acyl-coa: sterol acyltransferases enhanced squalene accumulation in Aurantiochytrium limacinum[J]. Front Microbiol, 2022, 13: 822254. doi: 10.3389/fmicb.2022.822254
|
[28] |
PATEL A, ROVA U, CHRISTAKOPOULOS P, et al. Simultaneous production of DHA and squalene from Aurantiochytrium sp. grown on forest biomass hydrolysates[J]. Biotechnol Biofuels, 2019, 12(1): 255-266. doi: 10.1186/s13068-019-1593-6
|
[29] |
PATEL A, ROVA U, CHRISTAKOPOULOS P, et al. Mining of squalene as a value added byproduct from DHA producing marine thraustochytrid cultivated on food waste hydrolysate[J]. Sci Total Environ, 2020, 736: 139691-139698. doi: 10.1016/j.scitotenv.2020.139691
|
[30] |
ZHU Z T, DU M M, GAO B, et al. Metabolic compartmentalization in yeast mitochondria: burden and solution for squalene overproduction[J]. Metab Eng, 2021, 68: 232-245. doi: 10.1016/j.ymben.2021.10.011
|
[31] |
LIU H, WANG F, DENG L, et al. Genetic and bioprocess engineering to improve squalene production in Yarrowia lipolytica[J]. Bioresour Technol, 2020, 317: 123991-123998. doi: 10.1016/j.biortech.2020.123991
|
[32] |
TANG W Y, WANG D P, TIAN Y, et al. Metabolic engineering of Yarrowia lipolytica for improving squalene production[J]. Bioresour Technol, 2021, 323: 124652-124657. doi: 10.1016/j.biortech.2020.124652
|
[33] |
MENG Y H, SHAO X X, WANG Y, et al. Extension of cell membrane boosting squalene production in the engineered Escherichia coli[J]. Biotechnol Bioeng, 2020, 117(11): 3499-3507. doi: 10.1002/bit.27511
|
[34] |
ZHOU C Y, LI M J, LU S R, et al. Engineering of cis-element in Saccharomyces cerevisiae for efficient accumulation of value-added compound squalene via down regulation of the downstream metabolic flux[J]. J Agric Food Chem, 2021, 69(42): 12474-12484. doi: 10.1021/acs.jafc.1c04978
|
[1] | QIAN Zhenjia, XU Jincheng, ZHANG Chenglin, YU Youbin, LIU Huang. Effect of different flow velocity on tail beat frequency and blood physiology of Plectropomus leopardus[J]. South China Fisheries Science, 2023, 19(2): 89-97. DOI: 10.12131/20220153 |
[2] | LIU Hongyan, FU Zhengyi, YU Gang, MA Zhenhua. Study on relationship between body mass and blood indexes of juvenile Thunnus albacares[J]. South China Fisheries Science, 2023, 19(1): 173-178. DOI: 10.12131/20220077 |
[3] | FANG Wei, ZHOU Shengjie, ZHAO Wang, YANG Rui, HU Jing, YU Gang, MA Zhenhua. Correlation and path analysis of morphological traits to body mass of juvenile Thunnus albacores[J]. South China Fisheries Science, 2021, 17(1): 52-58. DOI: 10.12131/20200158 |
[4] | ZHAO Hongxia, HU Junru, HUANG Hanhua, CHEN Bing, CAO Junming. Effect of dietary β-glucan on blood metabolites and immunity of Litopenaeus vannamei at low salinities[J]. South China Fisheries Science, 2020, 16(5): 87-98. DOI: 10.12131/20200046 |
[5] | WU Bin, FANG Chunlin, HE Gang, FU Peifeng. FiSAT II Software supported Length based Cohort Analysis[J]. South China Fisheries Science, 2013, 9(4): 94-98. DOI: 10.3969/j.issn.2095-0780.2013.04.016 |
[6] | HUANG Guangzhong, HU Hui, XIAO Keyu, LUO Shimin, XIE Peirong, OUYANG Juying. Effects of plant extract from grape seed and sweet wormwood on intestinal digestive enzyme activities and blood biochemical parameters of eel (Monopterus albus)[J]. South China Fisheries Science, 2013, 9(2): 70-75. DOI: 10.3969/j.issn.2095-0780.2013.02.012 |
[7] | LIU Zaijun, CEN Jianwei, LI Laihao, YANG Xianqing, HAO Shuxian, WEI Ya, ZHOU Wanjun. Thoughts and prospect of comprehensive utilization of tilapia blood[J]. South China Fisheries Science, 2012, 8(2): 76-80. DOI: 10.3969/j.issn.2095-0780.2012.02.012 |
[8] | HUANG Zhong, LIN Heizhao, NIU Jin, LV Guomin, CHEN Xu, CHEN Mingqiang. Effects of dietary inositol on growth, feed utilization and blood biochemical index of juvenile pompano (Trachinotus ovatus)[J]. South China Fisheries Science, 2011, 7(3): 39-44. DOI: 10.3969/j.issn.2095-0780.2011.03.007 |
[9] | YUAN Fenghua, LIN Heizhe, LI Zhuojia, LU Xin, YANG Qibin. Effects of dietary Bacillus licheniformis on blood physiological-biochemical indices in cultured Lates calarifer[J]. South China Fisheries Science, 2009, 5(2): 45-50. DOI: 10.3969/j.issn.1673-2227.2009.02.008 |
[10] | SU Youlu, XU Liwen, FENG Juan, GUO Zhixun, WANG Jiangyong. Study on the morphology of peripheral blood cells of juvenile cobia Rachycentron canadum[J]. South China Fisheries Science, 2007, 3(1): 48-53. |
1. |
刘鸿雁,付正祎,于刚,马振华. 黄鳍金枪鱼幼鱼体质量与血液指标关系研究. 南方水产科学. 2023(01): 173-178 .
![]() | |
2. |
戴世明,周胜杰,于刚,马振华. 金枪鱼养殖研究进展. 中国渔业质量与标准. 2023(01): 51-59 .
![]() |