Citation: | XIAO Yan, WANG Lu, WANG Sen, CONG Peihu, LU Dong, FENG Yingang, CUI Qiu, SONG Xiaojin. Mutation and selection of high squalene production yeast Pseudozyma sp. induced by carbon-ions beam irradiation and its electrotransfor-mation[J]. South China Fisheries Science, 2022, 18(2): 98-104. DOI: 10.12131/20210294 |
[1] |
HILL R A, CONNOLLY J D. Triterpenoids[J]. Nat Prod Rep, 2018, 35(12): 1294-1329. doi: 10.1039/C8NP00029H
|
[2] |
POPA O, BĂBEANU N E, POPA I, et al. Methods for obtaining and determination of squalene from natural sources[J]. Biomed Res Int, 2015, 2015: 367202-367217.
|
[3] |
LOU-BONAFONTE J M, MARTÍNEZ-BEAMONTE R, SANCLEMENTE T, et al. Current insights into the biological action of squalene[J]. Mol Nutr Food Res, 2018, 62(15): 1800136-1800151. doi: 10.1002/mnfr.201800136
|
[4] |
TETALI S D. Terpenes and isoprenoids: a wealth of compounds for global use[J]. Planta, 2019, 249(1): 1-8. doi: 10.1007/s00425-018-3056-x
|
[5] |
GARAIOVA M, HAPALA I. Squalene: from traditional medicine to modern applications[J]. Chem Listy, 2018, 112(7): 427-433.
|
[6] |
甘桢, 王蓓, 鲁义善, 等. 罗非鱼免疫学研究进展[J]. 生物技术通报, 2014(11): 32-39.
|
[7] |
EMBREGTS W E C, FORLENZA M. Oral vaccination of fish: lessons from humans and veterinary species[J]. Dev Comp Immunol, 2016, 64: 118-137.
|
[8] |
杨思静, 刘小芳, 刘建志, 等. 不同品种鲨鱼肝脂质组成特征分析[J]. 食品工业科技, 2020, 41(12): 307-312.
|
[9] |
GOHIL N, BHATTACHARJEE G, KHAMBHATI K, et al. Engineering strategies in microorganisms for the enhanced production of squalene: advances, challenges and opportunities[J]. Front Bioeng Biotech, 2019, 7: 1-24. doi: 10.3389/fbioe.2019.00050
|
[10] |
HAN J Y, SEO S H, SONG J M, et al. High-level recombinant production of squalene using selected Saccharomyces cerevisiae strains[J]. J Ind Microbiol Biotechnol, 2018, 45(4): 239-251. doi: 10.1007/s10295-018-2018-4
|
[11] |
HOANG M H, HA N C, THOM L T, et al. Extraction of squalene as value-added product from the residual biomass of Schizochytrium mangrovei PQ6 during biodiesel producing process[J]. J Biosci Bioeng, 2014, 118(6): 632-639.
|
[12] |
SONG X J, WANG X L, TAN Y Z, et al. High production of squalene using a newly isolated yeast-like strain Pseudozyma sp. SD301[J]. J Agric Food Chem, 2015, 63(38): 8445-8451. doi: 10.1021/acs.jafc.5b03539
|
[13] |
ENGLUND E, PATTANAIK B, UBHAYASEKERA S J K, et al. Production of squalene in Synechocystis sp. PCC 6803[J]. PLoS ONE, 2014, 9(3): e90270. doi: 10.1371/journal.pone.0090270
|
[14] |
陈积红, 胡伟, 李文建. 重离子束辐照在优良工业微生物新菌株创建中的应用实践[J]. 生物产业技术, 2017(1): 46-50.
|
[15] |
郭晓鹏. 基于酿酒酵母模型的重离子束辐射诱变机理及线粒体相关功能研究[D]. 兰州: 中国科学院近代物理研究所, 2020: 39-41.
|
[16] |
CHENG Y R, SUN Z J, CUI G Z, et al. A new strategy for strain improvement of Aurantiochytrium sp. based on heavy-ions mutagenesis and synergistic effects of cold stress and inhibitors of enoyl-ACP reductase[J]. Enzyme Microb Technol, 2016, 93/94: 182-190. doi: 10.1016/j.enzmictec.2016.08.019
|
[17] |
LIU G S, LI T, ZHOU W, et al. The yeast peroxisome: a dynamic storage depot and subcellular factory for squalene overproduction[J]. Metab Eng, 2020, 57: 151-161. doi: 10.1016/j.ymben.2019.11.001
|
[18] |
MARCHAND G, FORTIER E, NEVEU B, et al. Alternative methods for genetic transformation of Pseudozyma antarctica, a basidiomycetous yeast-like fungus[J]. J Microbiol Methods, 2007, 70(3): 519-527. doi: 10.1016/j.mimet.2007.06.014
|
[19] |
KONISHI M, YOSHIDA Y, IKARASHI M, et al. Efficient and simple electro-transformation of intact cells for the basidiomycetous fungus Pseudozyma hubeiensis[J]. Biotechnol Lett, 2015, 37(8): 1679-1685. doi: 10.1007/s10529-015-1837-x
|
[20] |
MORITA T, HABE H, FUKUOKA T, et al. Convenient transformation of anamorphic Basidiomycetous yeasts belonging to genus Pseudozyma induced by electroporation[J]. J Biosci Bioeng, 2007, 104(6): 517-520. doi: 10.1263/jbb.104.517
|
[21] |
LAN C Z, WANG Z J, WANG Z, et al. Optimizing eicosapentaenoic acid production by grafting a heterologous polyketide synthase pathway in the Thraustochytrid aurantiochytrium[J]. J Agric Food Chem, 2020, 68(40): 11253-11260. doi: 10.1021/acs.jafc.0c04299
|
[22] |
CHANG M H, KIM H J, JAHNG K Y, et al. The isolation and characterization of Pseudozyma sp. JCC 207, a novel producer of squalene[J]. Appl Microbiol Biotechnol, 2008, 78(6): 963-972. doi: 10.1007/s00253-008-1395-4
|
[23] |
王冬平. 代谢工程改造解脂耶氏酵母提高角鲨烯产量的研究[D]. 长沙: 湖南农业大学, 2020: 35.
|
[24] |
王均华. 酿酒酵母萜类化合物高效合成菌株的构建与代谢调控[D]. 无锡: 江南大学, 2021: 34.
|
[25] |
李宁, 刘波, 刁梦雪, 等. 产角鲨烯细胞工厂的构建及关键基因的筛选、克隆与表达[J]. 生物工程学报, 2021, 37(8): 2813-2824.
|
[26] |
KAYA K, NAKAZAWA A, MATSUURA H, et al. Thraustochytrid Aurantiochytrium sp. 18W-13a accummulates high amounts of squalene[J]. Biosci Biotechnol Biochem, 2011, 75(11): 2246-2248. doi: 10.1271/bbb.110430
|
[27] |
RAU E M, BARTOSOVA Z, KRISTIANSEN K A, et al. Overexpression of two new acyl-coa: diacylglycerol acyltransferase 2-like acyl-coa: sterol acyltransferases enhanced squalene accumulation in Aurantiochytrium limacinum[J]. Front Microbiol, 2022, 13: 822254. doi: 10.3389/fmicb.2022.822254
|
[28] |
PATEL A, ROVA U, CHRISTAKOPOULOS P, et al. Simultaneous production of DHA and squalene from Aurantiochytrium sp. grown on forest biomass hydrolysates[J]. Biotechnol Biofuels, 2019, 12(1): 255-266. doi: 10.1186/s13068-019-1593-6
|
[29] |
PATEL A, ROVA U, CHRISTAKOPOULOS P, et al. Mining of squalene as a value added byproduct from DHA producing marine thraustochytrid cultivated on food waste hydrolysate[J]. Sci Total Environ, 2020, 736: 139691-139698. doi: 10.1016/j.scitotenv.2020.139691
|
[30] |
ZHU Z T, DU M M, GAO B, et al. Metabolic compartmentalization in yeast mitochondria: burden and solution for squalene overproduction[J]. Metab Eng, 2021, 68: 232-245. doi: 10.1016/j.ymben.2021.10.011
|
[31] |
LIU H, WANG F, DENG L, et al. Genetic and bioprocess engineering to improve squalene production in Yarrowia lipolytica[J]. Bioresour Technol, 2020, 317: 123991-123998. doi: 10.1016/j.biortech.2020.123991
|
[32] |
TANG W Y, WANG D P, TIAN Y, et al. Metabolic engineering of Yarrowia lipolytica for improving squalene production[J]. Bioresour Technol, 2021, 323: 124652-124657. doi: 10.1016/j.biortech.2020.124652
|
[33] |
MENG Y H, SHAO X X, WANG Y, et al. Extension of cell membrane boosting squalene production in the engineered Escherichia coli[J]. Biotechnol Bioeng, 2020, 117(11): 3499-3507. doi: 10.1002/bit.27511
|
[34] |
ZHOU C Y, LI M J, LU S R, et al. Engineering of cis-element in Saccharomyces cerevisiae for efficient accumulation of value-added compound squalene via down regulation of the downstream metabolic flux[J]. J Agric Food Chem, 2021, 69(42): 12474-12484. doi: 10.1021/acs.jafc.1c04978
|