ZHANG Dongsheng, WANG Zufeng, ZHOU Wei. Effects of Jet Water Mixer on physicochemical parameters and bacterial abundance in Apostichopus japonicus pond[J]. South China Fisheries Science, 2021, 17(6): 85-92. DOI: 10.12131/20210065
Citation: ZHANG Dongsheng, WANG Zufeng, ZHOU Wei. Effects of Jet Water Mixer on physicochemical parameters and bacterial abundance in Apostichopus japonicus pond[J]. South China Fisheries Science, 2021, 17(6): 85-92. DOI: 10.12131/20210065

Effects of Jet Water Mixer on physicochemical parameters and bacterial abundance in Apostichopus japonicus pond

More Information
  • Received Date: February 20, 2021
  • Revised Date: April 27, 2021
  • Accepted Date: June 03, 2021
  • Available Online: June 20, 2021
  • Jet Water Mixer (JWM) is a set of new water quality improvement equipment. To evaluate the effects of JWM on the pond water quality improvement, we monitored eight physicochemical parameters, including temperature, salinity, pH, dissolved oxygen (DO), total ammonia nitrogen (TAN), nitrous nitrogen (NO2 -N), phosphate (PO4 3+-P), contents of sediment organic matter (TOM), abundance of living heterotrophic bacteria and culturable vibrio in the ponds of Dalian Zhuanghe Sea Cucumber Farm. The results show that compared with the control group, the contents of TAN and NO2 -N were the lowest from March to November except for NO2 -N in June; the PO4 3−-P content was the highest from March to August in JWM pond; the TOM content was the lowest in the sediment in each month (P<0.05). At thermocline and halocline stage, JWM increased the DO content significantly. JWM promoted the growth of living heterotrophic bacteria and restrained the growth of Vibrio as long as 8−9 months. It is concluded that JWM can improve water quality and reduce abundance of Vibrio in the water in spring, summer and autumn significantly, and reduce TOM content throughout the year, so it has a good application prospect in the cultivation of sea cucumbers.
  • [1]
    朱文嘉, 王联珠, 丁海燕, 等. 中国海参产业现状及质量控制对策[J]. 中国渔业质量与标准, 2012, 2(4): 57-60.
    [2]
    周玮, 夏念丽, 刘永兴, 等. 刺参对几种除草剂的急性毒性试验[J]. 水产科学, 2005, 24(5): 28-30. doi: 10.3969/j.issn.1003-1111.2005.05.009
    [3]
    MAGNUSSON M, HEIMANN K, RIDD M, et al. Esticide contamination and hytotoxicity of sediment interstitial water to troical benthic microalgae[J]. Water Res, 2013, 47(14): 5211-5221. doi: 10.1016/j.watres.2013.06.003
    [4]
    DIEENS N J, BUFDAN-DUBAU E, BUDINSKI H, et al. Toxicity effects of an environmental realistic herbicide mixture on the seagrass Zostera noltei[J]. Environ Pollut, 2017, 222: 393-403. doi: 10.1016/j.envpol.2016.12.021
    [5]
    MATOZZO V, FABRELLO J, MASIERO L, et al. Ecotoxicological risk assessment for the herbicide glyhosate to non-target aquatic secies: a case study with the mussel Mytilus gallorovincialis[J]. Environ Pollut, 2018, 237: 442-451. doi: 10.1016/j.envpol.2018.02.049
    [6]
    刘晓红, 缪礼鸿. 微生态制剂在水产养殖中的应用[J]. 武汉工业学院学报, 2012, 31(2): 24-27.
    [7]
    王彦波, 查龙应, 许梓荣. 微生态制剂改善对虾养殖池塘底质的效果[J]. 应用生态学报, 2006, 17(9): 1765-1767. doi: 10.3321/j.issn:1001-9332.2006.09.041
    [8]
    ZHAND D S, LI H, LIU Y, et al. Screening and identification of organics-degrading bacteria from the sediment of sea cucumber Aostichous jaonicus ponds[J]. Aquacult Int, 2016, 24(1): 373-384. doi: 10.1007/s10499-015-9931-6
    [9]
    王摆, 陈仲, 关晓燕, 等. 辽东湾仿刺参养殖池塘底质环境季节变化[J]. 水产科学, 2016, 35(6): 607-612.
    [10]
    王雨霏, 张劲松, 石峰, 等. 微孔增氧技术在海参池塘高产养殖中的应用[J]. 河北渔业, 2013(11): 28-29. doi: 10.3969/j.issn.1004-6755.2013.11.011
    [11]
    王祖峰. 仿刺参养殖池塘三种水质控制技术效果的比较[D]. 大连: 大连海洋大学, 2015: 19, 35.
    [12]
    周玮, 周岩. 实用水质净化机: ZL200620006141.5[P]. 2007-05-23.
    [13]
    周玮. 养殖池塘水质净化方法: ZL200610077526.5[P]. 2009-04-15.
    [14]
    林青, 张东升, 魏亚南, 等. 3种水质调控方式对刺参池塘浮游植物种群结构的影响[J]. 大连海洋大学学报, 2019, 34(4): 566-572.
    [15]
    孙广伟, 周玮, 党子乔, 等. 3种水质调控方式下刺参池塘初级生产力的周年变化[J]. 水产学报, 2020, 44(4): 632-641.
    [16]
    魏亚南, 张东升, 林青, 等. 3种水质调控方式下参池沉积物酶活性的比较研究[J]. 水产科学, 2020, 39(2): 193-199.
    [17]
    党子乔, 周玮, 雷兆霖, 等. 三种水质调控方式对海参池塘沉积物中底泥耗氧率周年变化的影响[J]. 中国水产, 2020(12): 78-80.
    [18]
    朱广伟, 秦伯强, 高光, 等. 灼烧对沉积物烧失量及铁、磷测定的影响[J]. 分析实验室, 2004, 23(9): 72-76.
    [19]
    许兵, 徐怀恕, 纪伟尚, 等. 活的非可培养状态霍乱弧菌的复苏[J]. 青岛海洋大学学报 (自然科学版), 1994(2): 187-194.
    [20]
    KAI G, WEN Z, SHAN W, et al. Food web structure and trophic levels in a saltwater ond sea cucumber and rawn olyculture system[J]. Acta Oceanologica Sinica, 2016, 35(4): 58-62. doi: 10.1007/s13131-016-0834-9
    [21]
    何翠, 田相利, 张乘, 等. 土质和岩礁养殖池塘刺参食物来源比较研究[J]. 海洋湖沼通报, 2015(2): 105-112.
    [22]
    温彬, 高勤峰, 张乘, 等. 池塘底泥生物组成的季节性变化对刺参食物来源的影响[J]. 水产学报, 2016, 40(11): 1724-1731.
    [23]
    GAO M L, HOU H M, ZHANG G L, et al. Bacterial diversity in the intestine of sea cucumber Stichous jaonicus[J]. Iran J Fish Sci, 2017, 16(1): 318-325.
    [24]
    GAO F, TSN J, SUN H, et al. Bacterial diversity of gut content in sea cucumber (Aostichous jaonicus) and its habitat surface sediment[J]. J Ocean Univ China, 2014, 13(2): 303-310. doi: 10.1007/s11802-014-2078-7
    [25]
    李彬, 荣小军, 廖梅杰, 等. 刺参肠道与养殖池塘环境中异养细菌和弧菌数量周年变化[J]. 海洋科学, 2012, 36(4): 63-67.
    [26]
    李秋芬, 姜娓娓, 刘淮德, 等. 刺参 (Aostichous jaonicus) 养殖环境中可培养细菌与理化参数的动态及其相关性分析[J]. 应用与环境生物学报, 2014, 20(3): 544-550.
    [27]
    闫法军. 刺参 (Aostichous jaonicus Selenka) 养殖池塘生态系统微生物结构与功能研究[D]. 青岛: 中国海洋大学, 2013: I-II.
    [28]
    杨霄. 分层型水库水体细菌群落演变机制与扬水曝气强化作用研究[D]. 西安: 西安建筑科技大学, 2016: I.
    [29]
    于占国, 林凤翱, 贺杰. 异养细菌和虾病关系的研究[J]. 海洋学报, 1995, 17(3): 85-91.
    [30]
    迟爽, 刘海军, 刘冉, 等. 刺参养殖池塘底泥理化指标和细菌数量变化的检测[J]. 渔业科学进展, 2014, 35(1): 111-117. doi: 10.3969/j.issn.1000-7075.2014.01.016
    [31]
    杜佗. 刺参大水面养殖系统中菌群、菌相结构的季节变化与益生菌的初步筛选[D]. 上海: 上海海洋大学, 2016: I.
    [32]
    丁斯予, 王荦, 徐瀚晨, 等. 刺参肠道及养殖环境菌群结构与功能[J]. 生态学杂志, 2019, 38(1): 210-220.
    [33]
    DENG H, HE C, ZHOU Z, et al. Isolation and athogenicity of athogens from skin ulceration disease and viscera ejection syndrome of the sea cucumber Aostichous jaonicus[J]. Aquaculture, 2009, 287(1/2): 18-27.
    [34]
    LIU H, ZHENG F, SUN X, et al. Identification of the athogens associated with skin ulceration and eristome tumescence in cultured sea cucumbers Aostichous jaonicus (Selenka)[J]. J Invertebr Pathol, 2010, 105(3): 236-242. doi: 10.1016/j.jip.2010.05.016
    [35]
    费聿涛, 李秋芬, 张艳, 等. 池塘养殖刺参腐皮综合征发病环境因素分析[J]. 中国水产科学, 2016, 23(3): 682-692.
  • Related Articles

    [1]LUO Yingying, HUANG Hui, LI Laihao, HAO Shuxian, CHEN Shengjun, WEI Ya, CEN Jianwei, XIANG Huan. Quality improvement and mechanism analysis of non-rinsing tilapia surimi gel[J]. South China Fisheries Science, 2025, 21(2): 164-173. DOI: 10.12131/20240238
    [2]ZHENG Jichang, YAN Han, JIANG Yan, XU Yongjiang, CUI Aijun, MA Bin. Effects of flow velocity on swimming behavior of Lateolabrax maculatus juvenile with different population sizes[J]. South China Fisheries Science. DOI: 10.12131/20240260
    [3]ZHANG Fan, CUI Mingchao, LIU Huang, YAO Chunjing, ZHANG Chen. Experimental study of flow field characteristics in tanks with different diameter-to-depth ratios[J]. South China Fisheries Science. DOI: 10.12131/20240290
    [4]QIAN Cheng, ZHANG Jiapeng, TU Xueying, LIU Huang, QIAO Gan, LIU Shijing. Turbot fish egg recognition and counting method based on CBAM-UNet[J]. South China Fisheries Science, 2024, 20(6): 132-144. DOI: 10.12131/20240123
    [5]ZHENG Haohao, YANG Xiaoming, ZHU Jiangfeng. Environmental impact mechanism of skipjack tuna fishery in Western and Central Pacific Ocean based on Multi-scale Geographical Weighted Regression Model (MGWR)[J]. South China Fisheries Science, 2023, 19(5): 1-10. DOI: 10.12131/20230014
    [6]CAI Yancong, SUN Mingshuai, XU Youwei, CHEN Zuozhi. Spatial heterogeneity of relationship between distribution of Uroteuthis chinensis and marine environment in offshore waters of northern South China Sea[J]. South China Fisheries Science, 2023, 19(3): 1-10. DOI: 10.12131/20220288
    [7]QIAN Zhenjia, XU Jincheng, ZHANG Chenglin, YU Youbin, LIU Huang. Effect of different flow velocity on tail beat frequency and blood physiology of Plectropomus leopardus[J]. South China Fisheries Science, 2023, 19(2): 89-97. DOI: 10.12131/20220153
    [8]ZHANG Qian, GUI Jinsong, REN Xiaozhong, XUE Boru, BI Chunwei, LIU Ying. Optimization of flow field in dual-drain square aquaculture tank with relative arc to width ratio[J]. South China Fisheries Science, 2022, 18(4): 119-125. DOI: 10.12131/20210044
    [9]GAO Jin, WANG Yongbo, LIU Jinye, GUO Yilan, FU Shuyuan. Transcriptome analysis of Plectropomus leopardus liver under different flow velocity[J]. South China Fisheries Science, 2022, 18(1): 107-117. DOI: 10.12131/20210125
    [10]HAN Peiwu, LI Nan, FANG Zhou, CHEN Xinjun. Heterogeneity of mantle length-body mass relationship in different Ommastrephes bartramii populations based on linear mixed model[J]. South China Fisheries Science, 2020, 16(6): 12-20. DOI: 10.12131/20200117
  • Cited by

    Periodical cited type(6)

    1. 赵新宇,史宝,王成刚,程汉良,马晓东. 投喂频率对工厂化循环水养殖星康吉鳗生长、生理指标及其水质的影响. 渔业科学进展. 2024(02): 233-244 .
    2. 杨仕沛,黄伟滨,谢明胜,周孟龙,李彪,陆柏泉,黄婉婷,谭北平,章双,杨原志,董晓慧. 投喂频率对珍珠龙胆石斑鱼生长性能、免疫、血清及肝脏生化指标的影响. 动物营养学报. 2024(07): 4576-4587 .
    3. 平洪领,付铁中,张涛,史会来,林慧,杨淑越. 投喂频率对横带髭鲷(Hapalogenys mucronatus)幼鱼生长、体成分、消化系统酶活及组织结构的影响. 海洋与湖沼. 2024(06): 1550-1558 .
    4. 孙瑞健,仇玉燕,杨志强,徐大凤,肖李霞,秦亚丽,倪可雯,周堂建,陈淑吟. 不同投饵率对黑鲷及其杂交子二代幼鱼影响差异. 渔业研究. 2023(02): 110-118 .
    5. 倪可雯,孙瑞健,徐大凤,于雯雯,周堂建,陈淑吟. 不同水温对5个品系黑鲷抗氧化和免疫因子的影响. 水产养殖. 2023(04): 46-52+75 .
    6. 孙瑞健,仇玉燕,杨志强,倪可雯,徐大凤,于雯雯,刘艳丽,肖李霞,陈淑吟. 投喂频率对杂交鲷及黑鲷的体成分、血清生化及基因表达的影响. 水产养殖. 2022(11): 24-31 .

    Other cited types(4)

Catalog

    Article views (667) PDF downloads (36) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return