HUANG Yuequn, CAI Desuo, SONG Xiaohong, JIANG Pingping, HUANG Shoukun. Study on monitoring technology of fish motion trajectories based on Acoustic Tag System[J]. South China Fisheries Science, 2020, 16(4): 114-120. DOI: 10.12131/20190269
Citation: HUANG Yuequn, CAI Desuo, SONG Xiaohong, JIANG Pingping, HUANG Shoukun. Study on monitoring technology of fish motion trajectories based on Acoustic Tag System[J]. South China Fisheries Science, 2020, 16(4): 114-120. DOI: 10.12131/20190269

Study on monitoring technology of fish motion trajectories based on Acoustic Tag System

More Information
  • Received Date: December 30, 2019
  • Revised Date: February 09, 2020
  • Accepted Date: March 26, 2020
  • Available Online: April 06, 2020
  • Acoustic tag monitoring technology, an active identification method of acoustic detection technology, can obtain 2D and 3D motion trajectories of fish by receiving and processing the acoustic signals emitting from acoustic tags which are transplanted or tied to fish. It has the advantages of in-situ observation, accurate positioning, simple data processing and good data continuity. The paper introduces the composition and working principle of acoustic tag monitoring technology. A complete data processing method of denoising and cleaning is proposed according to the different characteristics of abnormal data. With this method, the real-time 2D and 3D motion trajectories can be quickly obtained. The distribution of fish motion trajectories and changing rules are analyzed by an example. According to the behavioral response of fish in different water ecological environments, the potential effects and actual toxicity of pollutants or toxic substances in water can be judged directly or indirectly. It provides the references for water quality assessment in aquaculture, monitoring and early warning of water environment, health evaluation of aquatic ecological, as well as evaluation of aquatic ecological restoration.

  • [1]
    KANG I J, MOROISHI J, NAKAMURA A, et al. Biological monitoring for detection of toxic chemicals in water by the swimming behavior of small freshwater fish[J]. J Fac Agr Kyushu U, 2009, 54(1): 209-214.
    [2]
    王丽娜, 方景龙. 基于视频理解的活体鱼水质监测实验[J]. 杭州电子科技大学学报, 2010, 30(6): 36-38. doi: 10.3969/j.issn.1001-9146.2010.06.010
    [3]
    徐盼麟, 韩军. 基于视频的水箱内鱼类运动行为观测系统[J]. 湖南农业科学, 2011(19): 140-142. doi: 10.3969/j.issn.1006-060X.2011.19.043
    [4]
    江丹丹, 桂福坤. 基于视频图像的鱼类运动行为轨迹追踪[J]. 浙江海洋学院学报(自然科学版), 2015, 34(2): 112-118.
    [5]
    范伟康. 基于鱼群行为分析的水质监测系统研究[D]. 杭州: 浙江工业大学, 2015: 13-14.
    [6]
    余祥瑞. 基于双摄像机视频的生物水质预警系统的研究[D]. 宁波: 宁波大学, 2017: 5-6.
    [7]
    颜鹏东, 谭均军, 高柱, 等. 基于视频跟踪的竖缝式鱼道内鱼类运动行为分析[J]. 水生生物学报, 2018, 42(2): 250-254. doi: 10.7541/2018.031
    [8]
    于铭, 杨士莪. 被动式渔探仪开发设计与试验研究[J]. 应用声学, 2007, 26(4): 231-238. doi: 10.3969/j.issn.1000-310X.2007.04.008
    [9]
    于铭, 杨士莪, 牟冬英. 被动式渔探仪的信号检测与方位估计[J]. 哈尔滨工业大学学报, 2008, 40(1): 147-151. doi: 10.3321/j.issn:0367-6234.2008.01.037
    [10]
    STANTON, TIMOTHY K. 30 years of advances in active bioacoustics: a personal perspective[J]. Meth Oceanogr, 2012, s1/2: 49-77.
    [11]
    GODLEWSKA M, SWIERZOWSKI A. Hydroacoustical parameters of fish in reservoirs with contrasting levels of eutrophication[J]. Aquat Living Resour, 2003, 16(3): 167-173. doi: 10.1016/S0990-7440(03)00014-7
    [12]
    EVERSON I, TAABU M A, KAYANDA R. Acoustic estimates of commercial fish species in Lake Victoria: moving towards ecosystem-based fisheries management[J]. Fish Res, 2013, 139: 65-75. doi: 10.1016/j.fishres.2012.09.019
    [13]
    武智, 谭细畅, 李新辉, 等. 珠江首次禁渔西江段鱼类资源声学跟踪监测分析[J]. 南方水产科学, 2014, 10(3): 24-28. doi: 10.3969/j.issn.2095-0780.2014.03.004
    [14]
    武智, 李新辉, 李捷, 等. 红水河岩滩水库鱼类资源声学评估[J]. 南方水产科学, 2017, 13(3): 20-25. doi: 10.3969/j.issn.2095-0780.2017.03.003
    [15]
    SZCZUCKA J, HOPPE T, SCHMIDT B, et al. Acoustical estimation of fish distribution and abundance in two Spitsbergen fjords[J]. Oceanologia, 2017, 59(4): 585-591.
    [16]
    张翔, 沈蔚, 童剑锋, 等. 基于DIDSON双频识别声纳技术的青草沙水库鱼类资源量评估[J]. 上海海洋大学学报, 2017, 26(4): 561-569. doi: 10.12024/jsou.20161201919
    [17]
    CONTI S G, MAURER B D, ROUX P, et al. Acoustical monitoring of fish behavior in a tank[J]. J Acoust Soc Am, 2004, 116(4): 2489-2489.
    [18]
    张赞, 蔺丹清, 汤勇, 等. 基于声学测量方法的大伙房水库鱼类资源季节变动特征[J]. 南方水产科学, 2014, 10(6): 12-19. doi: 10.3969/j.issn.2095-0780.2014.06.002
    [19]
    孙明波, 谷孝鸿, 曾庆飞, 等. 基于水声学方法的天目湖鱼类季节和昼夜空间分布研究[J]. 生态学报, 2015, 23(9): 5597-5605.
    [20]
    连玉喜, 叶少文, 黄耿, 等. 三峡库区香溪河鱼类资源水声学探测效果的昼夜差异研究[J]. 水生生物学报, 2015, 39(5): 1041-1045. doi: 10.7541/2015.136
    [21]
    李斌, 陈国宝, 于杰, 等. 海南陵水湾口海域不同季节鱼类资源声学探查[J]. 水产学报, 2018, 42(4): 544-555.
    [22]
    郭杰. 航道整治透水框架群对鱼类集群影响的水声学探测[J]. 水生态学杂志, 2015, 36(5): 29-35.
    [23]
    马燕芹, 司纪锋. 基于水声技术的黄海近海鱼类活动定点监测研究[J]. 渔业现代化, 2016, 43(4): 70-75. doi: 10.3969/j.issn.1007-9580.2016.04.013
    [24]
    EHRENBERG J E, STEIG T W. A study of the relationship between tag-signal characteristics and achievable performances in acoustic fish-tag studies[J]. ICES J Mar Sci, 2009, 66(6): 1278-1283. doi: 10.1093/icesjms/fsp051
    [25]
    王志超, 陈国宝, 曾雷. 基于声学标志和无线跟踪方法的鱼类行为研究[J]. 南方水产科学, 2018, 14(2): 51-59. doi: 10.3969/j.issn.2095-0780.2018.02.007
    [26]
    STEIG T W, TIMKO M A. Innovative techniques for analyzing the three-dimensional behavioral results from acoustically tagged fish[J]. J Acoust Soc Am, 2005, 117(4): 2367-2367.
    [27]
    SEMMENS B X. Acoustically derived fine-scale behaviors of juvenile Chinook salmon (Oncorhynchus tshawytscha) associated with intertidal benthic habitats in an estuary[J]. Can J Fish Aquat Sci, 2008, 65(9): 2053-2062. doi: 10.1139/F08-107
    [28]
    SKALSKI J R, STEIG T W, HEMSTROM S L. Assessing compliance with fish survival standards: a case study at Rock Island dam, Washington[J]. Environ Sci Policy, 2012, 18: 45-51. doi: 10.1016/j.envsci.2012.01.001
    [29]
    李荣辉.鱼类栖息迁徒习性及其监测技术研究[D]. 南宁: 广西大学, 2013: 75-94
    [30]
    ABAID N, PORFIRI M. Collective behavior of fish shoals in one-dimensional annular domains[C]. Riverside: Institute of Electrical and Electronics Engineers, 2010 American Control Conference, Riverside: Institute of Electrical and Electronics Engineers,2010: 63-68.
    [31]
    SCHULTZ A A, KUMAGAI K K, BRIDGES B B. Methods to evaluate gut evacuation rates and predation using acoustic telemetry in the tracy fish collection facility primary channel[J]. Anim Biotel, 2015, 3(1): 1-9. doi: 10.1186/s40317-014-0021-8
    [32]
    HOLLO T, WATSON B M, JOHNSTON S V, et al. Behaviour of growth hormone transgenic coho salmon Oncorhynchus kisutch in marine mesocosms assessed by acoustic tag telemetry[J]. J Fish Biol, 2017, 90(4): 1660-1667. doi: 10.1111/jfb.13233
    [33]
    ROMINE J G, PERRY R W, JOHNSTON S V, et al. Identifying when tagged fishes have been consumed by piscivorous predators: application of multivariate mixture models to movement parameters of telemetered fishes[J]. Anim Biotel, 2014, 2(1): 3. doi: 10.1186/2050-3385-2-3
    [34]
    黄月群, 蔡德所, 李明泉, 等. 大坝泄水对鱼类洄游能力的影响研究[J]. 人民长江, 2019, 50(8): 74-80.
    [35]
    CAI D S, LI R H. Research on fish habitat based on acoustic fish tracking system[J]. JCIT, 2012, 7(23): 195-201. doi: 10.4156/jcit.vol7.issue23.23
    [36]
    HUANG Y Q, CAI D S, LI M Q, et al. Influence of changes in dissolved oxygen content on fish behavioral trajectories during water eutrophication[J]. Appl Ecol Env Res, 2018, 17(1): 653-666.
    [37]
    赵方旭. 不同水力条件下鱼类运动行为轨迹特性研究[D]. 南宁: 广西大学, 2016: 48-55
    [38]
    KRISTIANSEN T S, FEMO A, HOLM J C, et al. Swimming behavior as an indicator of low growth rate and impaired welfare in Atlantic halibut (Hippoglossus hippoglossus L.) reared at three stocking densities[J]. Aquaculture, 2004, 230(1/2/3/4): 137-151.
    [39]
    MCFARLANE W J, CUBITT K F, WILLIAMS H, et al. Can feeding status and stress level be assessed by analyzing patterns of muscle activity in free swimming rainbow trout (Oncorhynchus mykiss Walbaum)[J]. Aquaculture, 2004, 239(4): 467-484.
  • Related Articles

    [1]FAN Xiaoxu, LIN Shen, LIU Dan, TIAN Wei, JIANG Mei, LI Lei. Study on adhesion characteristics of fouling organisms of ultra-high molecular weight polyethylene and copper alloys mesh[J]. South China Fisheries Science, 2023, 19(6): 30-37. DOI: 10.12131/20230135
    [2]LI Yong, HONG Jiezhang, LI Huiquan. Fouling communities on neighboring artificial and natural reefs in Zhu Island, Pearl River estuary[J]. South China Fisheries Science, 2013, 9(2): 20-26. DOI: 10.3969/j.issn.2095-0780.2013.02.004
    [3]WANG Zenghuan, LIN Qin, WANG Xunuo. Analysis of lead content in marine organisms and risk assessment in Daya Bay[J]. South China Fisheries Science, 2010, 6(1): 54-58. DOI: 10.3969/j.issn.1673-2227.2010.01.010
    [4]ZHANG Wei, LI Chunhou, JIA Xiaoping, CHEN Peimao, FANG Liang. Multivariate analysis of organisms communities attached on concrete and iron reefs[J]. South China Fisheries Science, 2009, 5(3): 30-35. DOI: 10.3969/j.issn.1673-2227.2009.03.005
    [5]SHUI Bo-nian, GUO Di-fei. Seasonal variation analysis of fouling organisms on offshore cages in Zhoushan[J]. South China Fisheries Science, 2008, 4(4): 36-41.
    [6]CHEN Ming-qiang, LI You-ning, ZHANG Dian-chang, WU Kai-chang, YANG Qi-bin, WANG Yu, CHEN Xu, JIANG Shi-gui. Effect of XLP paint on the survival rate and growth of the pearl oyster and biomass of fouling organisms[J]. South China Fisheries Science, 2008, 4(4): 30-35.
    [7]ZHANG Wei, LI Chunhou, JIA Xiaoping, CHEN Peimao, FANG Liang. A review on influential factors of fouling organisms on artificial reef[J]. South China Fisheries Science, 2008, 4(1): 64-68.
    [8]WANG Xiao-wei, LI Chun-hou, SHEN Nan-nan. Effect of oil pollution on marine organism[J]. South China Fisheries Science, 2006, 2(2): 76-80.
    [9]HUANG Zirong, LIANG Xiaoyun, ZENG Jia. Preliminary study on effects of accrete organisms of artificial reef material[J]. South China Fisheries Science, 2006, 2(1): 34-38.
    [10]JIANG Zeng-jie, FANG Jian-guang. Effects of fouling organisms on shellfish cultivation and its prevention[J]. South China Fisheries Science, 2005, 1(3): 65-68.
  • Cited by

    Periodical cited type(14)

    1. 袁华荣,章守宇,林军,冯雪,汪振华,佟飞,王凯,陈钰祥,陈丕茂. 海洋牧场人工鱼礁生境营造的生态学理论框架探索. 水产学报. 2025(01): 3-26 .
    2. 胡闪闪 ,邹定辉 ,周凯 ,王芝玉 . 深圳东部海域海藻场大型海藻生态服务价值评估. 生态学杂志. 2024(01): 224-233 .
    3. 陈克亮,王梓浩,王骏博,高宇,岳亮,蔡锋. 海洋生态产品核算理论、方法及其应用实践. 应用海洋学学报. 2024(04): 708-720 .
    4. 张启宇,张文博,郑奕,陈英义,何锦辉. 基于CiteSpace分析的国内海洋牧场研究进展. 农业工程. 2024(11): 65-73 .
    5. 陈小龙,狄乾斌,侯智文,梁晨露. 海洋碳汇研究进展及展望. 资源科学. 2023(08): 1619-1633 .
    6. 吴素文,宋军,张燕,袁泽轶,张跃. 海洋生态系统服务价值及评估研究进展. 海洋预报. 2022(01): 104-116 .
    7. 李京梅,刘雨杭,苏萌,王玲玲,王子言. 中国海水养殖生态系统服务价值评估研究进展. 海洋开发与管理. 2022(10): 62-71 .
    8. 许双杰,高源. 中国海洋牧场发展潜力的时空差异分析. 海洋经济. 2022(06): 64-73 .
    9. 刘伟峰,刘大海,管松,姜伟. 海洋牧场生态效益的内涵与提升路径. 中国环境管理. 2021(02): 33-38+54 .
    10. 商思争,张得银,朱怡锦,吉彤,张文洁,王晶. 连云港海洋生态系统服务价值评估. 海洋经济. 2021(06): 50-61 .
    11. 许瑞恒,姜旭朝. 国外海洋生态补偿研究进展(1960-2018). 中国海洋大学学报(社会科学版). 2020(01): 84-93 .
    12. 杜元伟,姜靓,王一凡. 海洋牧场生态管理研究的现状与展望. 中国海洋大学学报(社会科学版). 2020(03): 32-41 .
    13. 许瑞恒,林欣月,姜旭朝. 海洋生态补偿研究动态综述. 生态经济. 2020(07): 147-153 .
    14. 许婷婷,王颖. 基于人工智能技术的海洋渔业生态自动化监测. 制造业自动化. 2020(07): 153-156 .

    Other cited types(7)

Catalog

    Article views (3705) PDF downloads (82) Cited by(21)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return