WANG Xiaochen, LÜ Binbin, XING Juanjuan, LI Dan, WANG Caining, REN Shengjie. Induced flow speed and its relationship to body length of two Schizothoracinae fishes in upper reaches of Yellow River[J]. South China Fisheries Science, 2020, 16(4): 47-53. DOI: 10.12131/20190249
Citation: WANG Xiaochen, LÜ Binbin, XING Juanjuan, LI Dan, WANG Caining, REN Shengjie. Induced flow speed and its relationship to body length of two Schizothoracinae fishes in upper reaches of Yellow River[J]. South China Fisheries Science, 2020, 16(4): 47-53. DOI: 10.12131/20190249

Induced flow speed and its relationship to body length of two Schizothoracinae fishes in upper reaches of Yellow River

More Information
  • Received Date: December 03, 2019
  • Revised Date: February 25, 2020
  • Accepted Date: April 10, 2020
  • Available Online: April 27, 2020
  • To investigate the response of fish induced flow speed to body length, we tested the induced flow speed of two Schizothoracinae fishes with different body lengths by increasing velocity in mobile Brett-type swim tunnels. Results show that the absolute induced flow speed of Gymnocypris eckloni [Body length (BL): (20.67±3.65) cm] and Schizopygopsis pylzovi [BL: (14.50±2.24) cm] were (4.97±1.22) cm·s−1 and (4.52±0.9) cm·s−1, respectively; and their relative induced flow speed were (0.24±0.045) BL·s−1 and (0.31±0.052) BL·s−1, respectively. The absolute induced flow speed was positively related to fish body length, while the relative induced flow speed was negatively related to fish body length since the increasing rate of the absolute induced flow speed was less than that of body length. There was no significant difference in the absolute induced flow speed between these two Schizothoracinate fishes (P>0.05). The constructed non-linear regression model can explain the response of fish induced flow speed to body length effectively. This study provides some guidance for the qualitative prediction of fish swimming characteristics in other areas where it is difficult to capture test samples, and also provide basic data for the design of fish facilities.

  • [1]
    唐文家, 何德奎. 黄河上游茨哈峡至积石峡段鱼类资源调查 (2005—2010年)[J]. 湖泊科学, 2013, 25(4): 600-608. doi: 10.3969/j.issn.1003-5427.2013.04.019
    [2]
    乐佩琦. 中国动物志 硬骨鱼纲 鲤形目 (下卷)[M]. 北京: 科学出版社, 2000: 273-379.
    [3]
    武云飞, 吴翠珍. 青藏高原鱼类[M]. 成都: 四川科学技术出版社, 1991: 437-474.
    [4]
    安盛勋. 黄河上游水电规划综述[J]. 西北水电, 2004(3): 1-5. doi: 10.3969/j.issn.1006-2610.2004.03.001
    [5]
    NILSSON C, REIDY C A, DYNESIUS M, et al. Fragmentation and flow regulation of the world's large river systems[J]. Science, 2005, 308(5720): 405-408. doi: 10.1126/science.1107887
    [6]
    HENNIG T, MAGEE D. Comment on ‘An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales’[J]. Environ Res Lett, 2017, 12(3): 38001. doi: 10.1088/1748-9326/aa5dc6
    [7]
    FAUSCH K D, TORGERSEN C E, BAXTER C V, et al. Landscapes to riverscapes: bridging the gap between research and conservation of stream fishes[J]. Bioscience, 2002, 52(6): 483-498. doi: 10.1641/0006-3568(2002)052[0483:LTRBTG]2.0.CO;2
    [8]
    陈凯麒, 常仲农, 曹晓红, 等. 我国鱼道的建设现状与展望[J]. 水利学报, 2012, 43(2): 182-188.
    [9]
    CHEN K Q, TAO J, CHANG Z N, et al. Difficulties and prospects of fishways in China: an overview of the construction status and operation practice since 2000[J]. Ecol Eng, 2014, 70(3): 82-91.
    [10]
    SHI X T, KYNARD B, LIU D F, et al. Development of fish passage in China[J]. Fisheries, 2015, 40(4): 161-169.
    [11]
    蔡露, 金瑶, 潘磊, 等. 过鱼设施设计中的鱼类行为研究与问题[J]. 生态学杂志, 2018, 37(11): 3458-3466.
    [12]
    曹庆磊, 杨文俊, 周良景. 国内外过鱼设施研究综述[J]. 长江科学院院报, 2010, 27(5): 39-42. doi: 10.3969/j.issn.1001-5485.2010.05.009
    [13]
    刘志雄, 周赤, 黄明海. 鱼道应用现状和研究进展[J]. 长江科学院院报, 2010, 27(4): 28-35. doi: 10.3969/j.issn.1001-5485.2010.04.007
    [14]
    郑金秀, 韩德举, 胡望斌, 等. 与鱼道设计相关的鱼类游泳行为研究[J]. 水生态学杂志, 2010, 3(5): 104-110.
    [15]
    赵希坤, 韩桢锷. 鱼类克服流速能力的试验[J]. 水产学报, 1980, 4(1): 31-37.
    [16]
    白艳勤, 路波, 罗佳, 等. 草鱼鲢、瓦氏黄颡鱼幼鱼感应流速的比较[J]. 生态学杂志, 2013, 32(8): 2085-2089.
    [17]
    王博, 石小涛, 周琛琳, 等. 北盘江两种鱼感应流速[J]. 北华大学学报 (自然科学版), 2013, 14(2): 223-226.
    [18]
    王晓臣, 邢娟娟. 5种鱼感应流速比较分析[J]. 水生态学杂志, 2018, 39(2): 77-81.
    [19]
    张硕, 陈勇. 黑鮶幼鱼趋流性的初步研究[J]. 上海水产大学学报, 2005, 14(3): 282-287.
    [20]
    李志敏, 陈明曦, 金志军, 等. 叶尔羌河厚唇裂腹鱼的游泳能力[J]. 生态学杂志, 2018, 37(6): 1897-1902.
    [21]
    蔡露, 王伟营, 王海龙, 等. 鱼感应流速对体长的响应及在过鱼设施流速设计中的应用[J]. 农业工程学报, 2018, 34(2): 176-181. doi: 10.11975/j.issn.1002-6819.2018.02.024
    [22]
    石小涛, 陈求稳, 刘德富, 等. 胭脂鱼幼鱼的临界游泳速度[J]. 水生生物学报, 2012, 36(1): 1-4.
    [23]
    刘慧杰, 王从锋, 刘德富, 等. 不同运动状态下鳙幼鱼的游泳特性研究[J]. 南方水产科学, 2017, 13(2): 85-92. doi: 10.3969/j.issn.2095-0780.2017.02.011
    [24]
    BRETT J R. The respiratory metabolism and swimming performance of young sockeye salmon[J]. J Fish Res Board Can, 1964, 21(5): 1183-1226. doi: 10.1139/f64-103
    [25]
    BRETTJ R. Swimming performance of sockeye salmon (Oncorhynchus nerka) in relation to fatigue time and temperature[J]. J Fish Res Board Can, 1967, 24(8): 1731-1741. doi: 10.1139/f67-142
    [26]
    许晓蓉. 西藏典型裂腹鱼游泳能力及鱼道方案优化数值模拟研究[D]. 宜昌: 三峡大学, 2012: 26-28.
    [27]
    曹文宣, 陈宜瑜, 武云飞, 等. 裂腹鱼类的起源和演化及其与青藏高原隆起的关系//青藏高原隆起的时代、幅度和形式问题[M]. 北京: 科学出版社, 1981: 118-129.
    [28]
    VOIGT R, CARTON A G, MONTGOMERY J C. Responses of anterior lateral line afferent neurones to water flow[J]. J Exp Biol, 2000, 203(Pt 16): 2495-2502.
    [29]
    CARTON A G, MONTGOMERY J C. Responses of lateral line receptors to water flow in the Antarctic notothenioid, Trematomus bernacchii[J]. Polar Biol, 2002, 25(10): 789-793.
    [30]
    HAMMER C. Fatigue and exercise tests with fish[J]. Comp Bioc A, 1995, 112(1): 1-20.
    [31]
    VERHILLE C E, POLETTO J B, COCHERELL D E, et al. Larval green and white sturgeon swimming performance in relation to water-diversion flows[J]. Conser Physl, 2014, 2(1): 31.
    [32]
    CAI L, CHRISTOS K, DAVID J, et al. Case study: targeting species and applying swimming performance data to fish lift design for the Huangdeng Dam on the upper Mekong River[J]. Ecol Eng, 2018, 122: 32-38. doi: 10.1016/j.ecoleng.2018.07.023
  • Cited by

    Periodical cited type(6)

    1. 赵新宇,史宝,王成刚,程汉良,马晓东. 投喂频率对工厂化循环水养殖星康吉鳗生长、生理指标及其水质的影响. 渔业科学进展. 2024(02): 233-244 .
    2. 杨仕沛,黄伟滨,谢明胜,周孟龙,李彪,陆柏泉,黄婉婷,谭北平,章双,杨原志,董晓慧. 投喂频率对珍珠龙胆石斑鱼生长性能、免疫、血清及肝脏生化指标的影响. 动物营养学报. 2024(07): 4576-4587 .
    3. 平洪领,付铁中,张涛,史会来,林慧,杨淑越. 投喂频率对横带髭鲷(Hapalogenys mucronatus)幼鱼生长、体成分、消化系统酶活及组织结构的影响. 海洋与湖沼. 2024(06): 1550-1558 .
    4. 孙瑞健,仇玉燕,杨志强,徐大凤,肖李霞,秦亚丽,倪可雯,周堂建,陈淑吟. 不同投饵率对黑鲷及其杂交子二代幼鱼影响差异. 渔业研究. 2023(02): 110-118 .
    5. 倪可雯,孙瑞健,徐大凤,于雯雯,周堂建,陈淑吟. 不同水温对5个品系黑鲷抗氧化和免疫因子的影响. 水产养殖. 2023(04): 46-52+75 .
    6. 孙瑞健,仇玉燕,杨志强,倪可雯,徐大凤,于雯雯,刘艳丽,肖李霞,陈淑吟. 投喂频率对杂交鲷及黑鲷的体成分、血清生化及基因表达的影响. 水产养殖. 2022(11): 24-31 .

    Other cited types(4)

Catalog

    Article views (2971) PDF downloads (42) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return