Citation: | WANG Xiaochen, LÜ Binbin, XING Juanjuan, LI Dan, WANG Caining, REN Shengjie. Induced flow speed and its relationship to body length of two Schizothoracinae fishes in upper reaches of Yellow River[J]. South China Fisheries Science, 2020, 16(4): 47-53. DOI: 10.12131/20190249 |
To investigate the response of fish induced flow speed to body length, we tested the induced flow speed of two Schizothoracinae fishes with different body lengths by increasing velocity in mobile Brett-type swim tunnels. Results show that the absolute induced flow speed of Gymnocypris eckloni [Body length (BL): (20.67±3.65) cm] and Schizopygopsis pylzovi [BL: (14.50±2.24) cm] were (4.97±1.22) cm·s−1 and (4.52±0.9) cm·s−1, respectively; and their relative induced flow speed were (0.24±0.045) BL·s−1 and (0.31±0.052) BL·s−1, respectively. The absolute induced flow speed was positively related to fish body length, while the relative induced flow speed was negatively related to fish body length since the increasing rate of the absolute induced flow speed was less than that of body length. There was no significant difference in the absolute induced flow speed between these two Schizothoracinate fishes (P>0.05). The constructed non-linear regression model can explain the response of fish induced flow speed to body length effectively. This study provides some guidance for the qualitative prediction of fish swimming characteristics in other areas where it is difficult to capture test samples, and also provide basic data for the design of fish facilities.
[1] |
唐文家, 何德奎. 黄河上游茨哈峡至积石峡段鱼类资源调查 (2005—2010年)[J]. 湖泊科学, 2013, 25(4): 600-608. doi: 10.3969/j.issn.1003-5427.2013.04.019
|
[2] |
乐佩琦. 中国动物志 硬骨鱼纲 鲤形目 (下卷)[M]. 北京: 科学出版社, 2000: 273-379.
|
[3] |
武云飞, 吴翠珍. 青藏高原鱼类[M]. 成都: 四川科学技术出版社, 1991: 437-474.
|
[4] |
安盛勋. 黄河上游水电规划综述[J]. 西北水电, 2004(3): 1-5. doi: 10.3969/j.issn.1006-2610.2004.03.001
|
[5] |
NILSSON C, REIDY C A, DYNESIUS M, et al. Fragmentation and flow regulation of the world's large river systems[J]. Science, 2005, 308(5720): 405-408. doi: 10.1126/science.1107887
|
[6] |
HENNIG T, MAGEE D. Comment on ‘An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales’[J]. Environ Res Lett, 2017, 12(3): 38001. doi: 10.1088/1748-9326/aa5dc6
|
[7] |
FAUSCH K D, TORGERSEN C E, BAXTER C V, et al. Landscapes to riverscapes: bridging the gap between research and conservation of stream fishes[J]. Bioscience, 2002, 52(6): 483-498. doi: 10.1641/0006-3568(2002)052[0483:LTRBTG]2.0.CO;2
|
[8] |
陈凯麒, 常仲农, 曹晓红, 等. 我国鱼道的建设现状与展望[J]. 水利学报, 2012, 43(2): 182-188.
|
[9] |
CHEN K Q, TAO J, CHANG Z N, et al. Difficulties and prospects of fishways in China: an overview of the construction status and operation practice since 2000[J]. Ecol Eng, 2014, 70(3): 82-91.
|
[10] |
SHI X T, KYNARD B, LIU D F, et al. Development of fish passage in China[J]. Fisheries, 2015, 40(4): 161-169.
|
[11] |
蔡露, 金瑶, 潘磊, 等. 过鱼设施设计中的鱼类行为研究与问题[J]. 生态学杂志, 2018, 37(11): 3458-3466.
|
[12] |
曹庆磊, 杨文俊, 周良景. 国内外过鱼设施研究综述[J]. 长江科学院院报, 2010, 27(5): 39-42. doi: 10.3969/j.issn.1001-5485.2010.05.009
|
[13] |
刘志雄, 周赤, 黄明海. 鱼道应用现状和研究进展[J]. 长江科学院院报, 2010, 27(4): 28-35. doi: 10.3969/j.issn.1001-5485.2010.04.007
|
[14] |
郑金秀, 韩德举, 胡望斌, 等. 与鱼道设计相关的鱼类游泳行为研究[J]. 水生态学杂志, 2010, 3(5): 104-110.
|
[15] |
赵希坤, 韩桢锷. 鱼类克服流速能力的试验[J]. 水产学报, 1980, 4(1): 31-37.
|
[16] |
白艳勤, 路波, 罗佳, 等. 草鱼鲢、瓦氏黄颡鱼幼鱼感应流速的比较[J]. 生态学杂志, 2013, 32(8): 2085-2089.
|
[17] |
王博, 石小涛, 周琛琳, 等. 北盘江两种鱼感应流速[J]. 北华大学学报 (自然科学版), 2013, 14(2): 223-226.
|
[18] |
王晓臣, 邢娟娟. 5种鱼感应流速比较分析[J]. 水生态学杂志, 2018, 39(2): 77-81.
|
[19] |
张硕, 陈勇. 黑鮶幼鱼趋流性的初步研究[J]. 上海水产大学学报, 2005, 14(3): 282-287.
|
[20] |
李志敏, 陈明曦, 金志军, 等. 叶尔羌河厚唇裂腹鱼的游泳能力[J]. 生态学杂志, 2018, 37(6): 1897-1902.
|
[21] |
蔡露, 王伟营, 王海龙, 等. 鱼感应流速对体长的响应及在过鱼设施流速设计中的应用[J]. 农业工程学报, 2018, 34(2): 176-181. doi: 10.11975/j.issn.1002-6819.2018.02.024
|
[22] |
石小涛, 陈求稳, 刘德富, 等. 胭脂鱼幼鱼的临界游泳速度[J]. 水生生物学报, 2012, 36(1): 1-4.
|
[23] |
刘慧杰, 王从锋, 刘德富, 等. 不同运动状态下鳙幼鱼的游泳特性研究[J]. 南方水产科学, 2017, 13(2): 85-92. doi: 10.3969/j.issn.2095-0780.2017.02.011
|
[24] |
BRETT J R. The respiratory metabolism and swimming performance of young sockeye salmon[J]. J Fish Res Board Can, 1964, 21(5): 1183-1226. doi: 10.1139/f64-103
|
[25] |
BRETTJ R. Swimming performance of sockeye salmon (Oncorhynchus nerka) in relation to fatigue time and temperature[J]. J Fish Res Board Can, 1967, 24(8): 1731-1741. doi: 10.1139/f67-142
|
[26] |
许晓蓉. 西藏典型裂腹鱼游泳能力及鱼道方案优化数值模拟研究[D]. 宜昌: 三峡大学, 2012: 26-28.
|
[27] |
曹文宣, 陈宜瑜, 武云飞, 等. 裂腹鱼类的起源和演化及其与青藏高原隆起的关系//青藏高原隆起的时代、幅度和形式问题[M]. 北京: 科学出版社, 1981: 118-129.
|
[28] |
VOIGT R, CARTON A G, MONTGOMERY J C. Responses of anterior lateral line afferent neurones to water flow[J]. J Exp Biol, 2000, 203(Pt 16): 2495-2502.
|
[29] |
CARTON A G, MONTGOMERY J C. Responses of lateral line receptors to water flow in the Antarctic notothenioid, Trematomus bernacchii[J]. Polar Biol, 2002, 25(10): 789-793.
|
[30] |
HAMMER C. Fatigue and exercise tests with fish[J]. Comp Bioc A, 1995, 112(1): 1-20.
|
[31] |
VERHILLE C E, POLETTO J B, COCHERELL D E, et al. Larval green and white sturgeon swimming performance in relation to water-diversion flows[J]. Conser Physl, 2014, 2(1): 31.
|
[32] |
CAI L, CHRISTOS K, DAVID J, et al. Case study: targeting species and applying swimming performance data to fish lift design for the Huangdeng Dam on the upper Mekong River[J]. Ecol Eng, 2018, 122: 32-38. doi: 10.1016/j.ecoleng.2018.07.023
|