HE Peng, JIANG Shigui, LI Yundong, YANG Qibin, JIANG Song, YANG Lishi, HUANG Jianhua, ZHOU Falin. Molecular cloning and expression pattern analysis of GLUT1 in black tiger shrimp (Penaeus monodon)[J]. South China Fisheries Science, 2019, 15(2): 72-82. DOI: 10.12131/20180264
Citation: HE Peng, JIANG Shigui, LI Yundong, YANG Qibin, JIANG Song, YANG Lishi, HUANG Jianhua, ZHOU Falin. Molecular cloning and expression pattern analysis of GLUT1 in black tiger shrimp (Penaeus monodon)[J]. South China Fisheries Science, 2019, 15(2): 72-82. DOI: 10.12131/20180264

Molecular cloning and expression pattern analysis of GLUT1 in black tiger shrimp (Penaeus monodon)

More Information
  • Received Date: November 27, 2018
  • Revised Date: January 02, 2019
  • Accepted Date: January 27, 2019
  • Available Online: February 17, 2019
  • We obtained the full-length cDNA sequence of GLUT1 from Penaeus monodon by rapid amplification of cDNA ends (RACE), and investigated the expression of GLUT1 at different larval developmental stages, in different tissues, and under low salinity stress by quantitative real-time PCR. The total cDNA sequence of PmGLUT1 open reading frame (ORF) was 1 476 bp, encoding 491 amino acids. From zygote to postlarva stages, the expression of PmGLUT1 fluctuated but showed an increasing trend. The PmGLUT1 was expressed in all tested tissues with the highest expression in gill tissue, followed by hepatopancreas, and the lowest expression was in ovary. After acute low salinity stress, the expression level of PmGLUT1 mRNA in hepatopancreas was significantly higher than that in the control group, while the expression level in gill was significantly lower than that in the control group (P<0.05). The results show that PmGLUT1 might play an important role at different larval developmental stages and under low salinity stress, which provides a theoretical basis for studying the molecular mechanism of PmGLUT1 in larval development and salinity adaptation of P. monodon.

  • [1]
    江诚, 谢俊, 陈海峰. 葡萄糖转运蛋白的转运机制研究[J]. 基因组学与应用生物学, 2015, 34(7): 1372-1377.
    [2]
    ULDRY M, THORENS B. The SLC2 family of facilitated hexose and polyol transporters[J]. Pflugers Arch, 2004, 447(5): 480-489. doi: 10.1007/s00424-003-1085-0
    [3]
    AUGUSTIN R. The protein family of glucose transport facilitators: it's not only about glucose after all[J]. IUBMB Life, 2010, 62(5): 315-333.
    [4]
    王尔孚, 李昕, 贾春松, 等. 低氧预适应上调大鼠海马神经元和星形胶质细胞在急性缺氧时的葡萄糖转运蛋白的活性和基因表达[J]. 基础医学与临床, 2009, 29(12): 1273-1276.
    [5]
    邱萤, 黄桂菊, 刘宝锁, 等. 企鹅珍珠贝GLUT1基因全长cDNA克隆及其对葡萄糖的表达响应[J]. 南方水产科学, 2016, 12(5): 81-89. doi: 10.3969/j.issn.2095-0780.2016.05.010
    [6]
    任鸣春. 军曹鱼和虹鳟糖类营养生理研究[D]. 青岛: 中国海洋大学, 2012: 115-135.
    [7]
    BALMACEDA-AGUILERA C, MARTOS-SITCHA J A, MANCERA J. Cloning and expression pattern of facilitative glucose transporter 1 (GLUT1) in gilthead sea bream Sparus aurata in response to salinity acclimation[J]. Comp Biochem Physiol A, 2012, 163(1): 38-46. doi: 10.1016/j.cbpa.2012.04.026
    [8]
    MARTINEZ-QUINTANA J A, PEREGRINO-URIARTE A B, GOLLAS-GALVÁN S, et al. The glucose transporter 1-GLUT1-from the white shrimp Litopenaeus vannamei is up-regulated during hypoxia[J]. Mol Biol Rep, 2014, 41(12): 7885-7898. doi: 10.1007/s11033-014-3682-8
    [9]
    WANG X D, LI E C, CHEN K, et al. Response of facilitative glucose transporter 1 to salinity stress and dietary carbohydrate nutrition in white shrimp Litopenaeus vannamei[J]. Aquacult Nutr, 2017, 23(1): 90-100. doi: 10.1111/anu.2017.23.issue-1
    [10]
    LI R X, LIU H Y, DONG X H, et al. Molecular characterization and expression analysis of glucose transporter 1 and hepatic glycolytic enzymes activities from herbivorous fish Ctenopharyngodon idellus in respond to a glucose load after the adaptation to dietary carbohydrate levels[J]. Aquaculture, 2018, 492: 290-299. doi: 10.1016/j.aquaculture.2018.04.028
    [11]
    LIU H Y, DONG X H, CHI S Y, et al. Molecular cloning of glucose transporter 1 in grouper Epinephelus coioides and effects of an acute hyperglycemia stress on its expression and glucose tolerance[J]. Fish Physiol Biochem, 2017, 43(1): 103-114. doi: 10.1007/s10695-016-0271-x
    [12]
    杨其彬, 叶乐, 温为庚, 等. 盐度对斑节对虾蜕壳、存活、生长和饲料转化率的影响[J]. 南方水产, 2008, 4(1): 16-21. doi: 10.3969/j.issn.2095-0780.2008.01.003
    [13]
    滕继林, 肖军. 葡萄糖转运蛋白1的研究进展[J]. 生物学教学, 2015, 40(6): 2-3.
    [14]
    江世贵, 杨丛海, 周发林, 等. 斑节对虾种虾繁育技术[M]. 北京: 海洋出版社, 2013: 80-81.
    [15]
    YANG L, LI X, JIANG S, et al. Characterization of Argonaute2 gene from black tiger shrimp (Penaeus monodon) and its responses to immune challenges[J]. Fish Shellfish Immunol, 2014, 36(1): 261-269. doi: 10.1016/j.fsi.2013.11.010
    [16]
    吴勉之, 杨丽诗, 周发林, 等. 斑节对虾2种高血糖激素家族基因的基因组序列分析和表达研究[J]. 南方水产科学, 2018, 14(4): 27-36. doi: 10.3969/j.issn.2095-0780.2018.04.004
    [17]
    邱萤. 企鹅珍珠贝葡萄糖转运蛋白1同源异构型基因的克隆及对葡萄糖应激的表达响应分析[D]. 上海: 上海海洋大学, 2016: 41-46.
    [18]
    HALL J R, MACCORMACK T J, BARRY C A, et al. Sequence and expression of a constitutive, facilitated glucose transporter (GLUT1) in Atlantic cod Gadus morhua[J]. J Exp Biol, 2004, 207(26): 4697-4706. doi: 10.1242/jeb.01346
    [19]
    MORRIS S. Neuroendocrine regulation of osmoregulation and the evolution of air-breathing in decapod crustaceans[J]. J Exp Biol, 2001, 204(5): 979-989.
    [20]
    VINAGRE A S, da SILVA R S M. Effects of fasting and refeeding on metabolic processes in the crab Chasmagnathus granulata (Dana, 1851)[J]. Can J Zool, 2002, 80(8): 1413-1421. doi: 10.1139/z02-122
    [21]
    WANG X D, LI E C, XU Z X, et al. Molecular response of carbohydrate metabolism to dietary carbohydrate and acute low salinity stress in Pacific white shrimp Litopenaeus vannamei[J]. Turkish J Fish Aquat Sci, 2017, 17(1): 153-169.
    [22]
    SÁNCHEZ-PAZ A, GARCÍA-CARREÑO F, HERNÁNDEZ-LÓPEZ J, et al. Effect of short-term starvation on hepatopancreas and plasma energy reserves of the Pacific white shrimp (Litopenaeus vannamei)[J]. J Exp Mar Bio Ecol, 2007, 340(2): 184-193. doi: 10.1016/j.jembe.2006.09.006
    [23]
    OLIVEIRA G T, da SILVA R S M. Hepatopancreas gluconeogenesis during hyposmotic stress in crabs Chasmagnathus granulata maintained on high-protein or carbohydrate-rich diets[J]. Comp Biochem Physiol B, 2000, 127(3): 375-381. doi: 10.1016/S0305-0491(00)00274-1
    [24]
    ROSAS C, CUZON G, GAXIOLA G, et al. Metabolism and growth of juveniles of Litopenaeus vannamei: effect of salinity and dietary carbohydrate levels[J]. J Exp Mar Bio Ecol, 2001, 259(1): 1-22. doi: 10.1016/S0022-0981(01)00222-2
    [25]
    CARMONA R, GARCÍA-GALLEGO M, SANZ A, et al. Chloride cells and pavement cells in gill epithelia of Acipenser naccarii: ultrastructural modifications in seawater-acclimated specimens[J]. J Fish Biol, 2004, 64(2): 553-566. doi: 10.1111/jfb.2004.64.issue-2
    [26]
    王晓杰, 张秀梅, 姜明. 盐度胁迫对许氏平鲉鳃、头肾、脾脏超微结构的影响[J]. 中国海洋大学学报(自然科学版), 2006(S1): 85-90.
    [27]
    王艳, 胡先成. 不同盐度下鲈鱼稚鱼鳃的显微结构观察[J]. 海洋科学, 2009, 33(12): 138-142.
    [28]
    张硕, 董双林. 饵料和盐度对中国对虾幼虾能量收支的影响[J]. 大连水产学院学报, 2002, 17(3): 227-233. doi: 10.3969/j.issn.1000-9957.2002.03.009
    [29]
    YE L, JIANG S G, ZHU X M, et al. Effects of salinity on growth and energy budget of juvenile Penaeus monodon[J]. Aquaculture, 2009, 290(1/2): 140-144.
    [30]
    YIN S J, ZHANG L M, ZHANG L L, et al. Metabolic responses and arginine kinase expression of juvenile cuttlefish (Sepia pharaonis) under salinity stress[J]. Int J Biol Macromol, 2018, 113: 881-888. doi: 10.1016/j.ijbiomac.2018.03.036
  • Related Articles

    [1]SI Mengru, LI Yundong, YANG Qibin, JIANG Song, YANG Lishi, HUANG Jianhua, JIANG Shigui, ZHOU Falin. Characterization and expression analysis of PP2C from Penaeus monodon under acute low salt and ammonia nitrogen stress[J]. South China Fisheries Science, 2022, 18(3): 76-85. DOI: 10.12131/20210193
    [2]LI Junwei, HU Ruiping, CHEN Suwen, GUO Yongjian, ZHU Changbo, LI Ting, XIE Xiaoyong, SU Jiaqi. Effects of low salinity pressure on biological tissue and immunity enzymes activities of Sipunculus nudus[J]. South China Fisheries Science, 2021, 17(4): 41-48. DOI: 10.12131/20210022
    [3]SHEN Ye, WANG Xingqiang, CAO Mei, ZHENG Nianhao, CHEN Baiyao, QIN Chuanxin. Transcriptome analysis of Exopalaemon carinicauda under low salinity stress[J]. South China Fisheries Science, 2020, 16(5): 19-32. DOI: 10.12131/20190267
    [4]ZHUANG Mingge, JIANG Shigui, ZHOU Falin, HUANG Jianhua, YANG Qibin, JIANG Song, YANG Lishi. Molecular cloning and multifunction exploration of CFSH gene in Penaeus monodon[J]. South China Fisheries Science, 2020, 16(4): 90-99. DOI: 10.12131/20200011
    [5]WANG Yun, LI Zheng, DUAN Yafei, WANG Jun, HUANG Zhong, LIN Heizhao. Effect of dietary Rhodiola rosea extract on antioxidant system and anti-low salinity stress of Litopenaeus vannamei[J]. South China Fisheries Science, 2018, 14(1): 9-19. DOI: 10.3969/j.issn.2095-0780.2018.01.002
    [6]ZHAO Zhixia, WU Yanyan, LI Laihao, CHEN Shengjun, LIN Wanling, DENG Jianchao. Study on fast brining technology for low-salinity tilapia fillets[J]. South China Fisheries Science, 2017, 13(6): 105-114. DOI: 10.3969/j.issn.2095-0780.2017.06.013
    [7]QIU Ying, HUANG Guiju, LIU Baosuo, FAN Sigang, LI Youning, CHEN Mingqiang, YU Dahui. Cloning of GLUT1 gene from winged pearl oyster Pteria penguin and its expression in response to glucose challenge[J]. South China Fisheries Science, 2016, 12(5): 81-89. DOI: 10.3969/j.issn.2095-0780.2016.05.010
    [8]LIU Yujiao, ZHU Huaping, LU Maixin, LIU Zhigang, CAO Jianmeng, GAO Fengying, KE Xiaoli. Effect of salinity stress on expression of PRLⅠgenes from tilapia and their distribution in different tissues[J]. South China Fisheries Science, 2014, 10(6): 51-57. DOI: 10.3969/j.issn.2095-0780.2014.06.007
    [9]TANG Xia, HUANG Guoqiang, LI Jie, ZHANG Xiumei. Effects of low salinity stress on growth of juvenileParalichthys olivaceus[J]. South China Fisheries Science, 2012, 8(3): 10-16. DOI: 10.3969/j.issn.2095-0780.2012.03.002
    [10]LIU Xiaozhu, LI Zhuojia, CAO Yucheng, WEN Guoliang. Common species composition, quantity variation and dominant species of planktonic microalgae in low salinity culture ponds[J]. South China Fisheries Science, 2009, 5(1): 9-16. DOI: 10.3969/j.issn.1673-2227.2009.01.002
  • Cited by

    Periodical cited type(5)

    1. 许文静,丁千千,高炜峰,敖士齐,朱玉洁,高晓建,张晓君,姜群. 罗氏沼虾GLUT1基因克隆及其在血糖稳态调节中的功能. 中国水产科学. 2023(04): 415-424 .
    2. 赵楠楠,崔彦婷,王忠凯,王聪,张志豪,邓之通,赵瑞阳,孙金凤,王仁杰,李玉全. 投喂频率对凡纳滨对虾(Litopenaeus vannamei)PI3K信号通路及糖代谢相关酶基因表达的影响. 海洋与湖沼. 2022(05): 1189-1196 .
    3. 宋柳,张凤,吕建建,刘萍,高保全,李健. 三疣梭子蟹几丁质酶基因1的克隆及功能鉴定. 渔业科学进展. 2021(01): 144-153 .
    4. 李俊伟,胡瑞萍,陈素文,郭永坚,朱长波,李婷,颉晓勇,苏家齐. 低盐胁迫对光裸方格星虫相关组织结构和非特异性免疫酶的影响. 南方水产科学. 2021(04): 41-48 . 本站查看
    5. 范红弟,李运东,杨其彬,姜松,杨丽诗,黄建华,江世贵,张汤生,周发林. 斑节对虾MKK7基因的克隆及在不同胁迫条件下的表达分析. 中国水产科学. 2020(07): 748-758 .

    Other cited types(5)

Catalog

    Article views (4487) PDF downloads (49) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return