HE Peng, JIANG Shigui, LI Yundong, YANG Qibin, JIANG Song, YANG Lishi, HUANG Jianhua, ZHOU Falin. Molecular cloning and expression pattern analysis of GLUT1 in black tiger shrimp (Penaeus monodon)[J]. South China Fisheries Science, 2019, 15(2): 72-82. DOI: 10.12131/20180264
Citation: HE Peng, JIANG Shigui, LI Yundong, YANG Qibin, JIANG Song, YANG Lishi, HUANG Jianhua, ZHOU Falin. Molecular cloning and expression pattern analysis of GLUT1 in black tiger shrimp (Penaeus monodon)[J]. South China Fisheries Science, 2019, 15(2): 72-82. DOI: 10.12131/20180264

Molecular cloning and expression pattern analysis of GLUT1 in black tiger shrimp (Penaeus monodon)

More Information
  • Received Date: November 27, 2018
  • Revised Date: January 02, 2019
  • Accepted Date: January 27, 2019
  • Available Online: February 17, 2019
  • We obtained the full-length cDNA sequence of GLUT1 from Penaeus monodon by rapid amplification of cDNA ends (RACE), and investigated the expression of GLUT1 at different larval developmental stages, in different tissues, and under low salinity stress by quantitative real-time PCR. The total cDNA sequence of PmGLUT1 open reading frame (ORF) was 1 476 bp, encoding 491 amino acids. From zygote to postlarva stages, the expression of PmGLUT1 fluctuated but showed an increasing trend. The PmGLUT1 was expressed in all tested tissues with the highest expression in gill tissue, followed by hepatopancreas, and the lowest expression was in ovary. After acute low salinity stress, the expression level of PmGLUT1 mRNA in hepatopancreas was significantly higher than that in the control group, while the expression level in gill was significantly lower than that in the control group (P<0.05). The results show that PmGLUT1 might play an important role at different larval developmental stages and under low salinity stress, which provides a theoretical basis for studying the molecular mechanism of PmGLUT1 in larval development and salinity adaptation of P. monodon.

  • [1]
    江诚, 谢俊, 陈海峰. 葡萄糖转运蛋白的转运机制研究[J]. 基因组学与应用生物学, 2015, 34(7): 1372-1377.
    [2]
    ULDRY M, THORENS B. The SLC2 family of facilitated hexose and polyol transporters[J]. Pflugers Arch, 2004, 447(5): 480-489. doi: 10.1007/s00424-003-1085-0
    [3]
    AUGUSTIN R. The protein family of glucose transport facilitators: it's not only about glucose after all[J]. IUBMB Life, 2010, 62(5): 315-333.
    [4]
    王尔孚, 李昕, 贾春松, 等. 低氧预适应上调大鼠海马神经元和星形胶质细胞在急性缺氧时的葡萄糖转运蛋白的活性和基因表达[J]. 基础医学与临床, 2009, 29(12): 1273-1276.
    [5]
    邱萤, 黄桂菊, 刘宝锁, 等. 企鹅珍珠贝GLUT1基因全长cDNA克隆及其对葡萄糖的表达响应[J]. 南方水产科学, 2016, 12(5): 81-89. doi: 10.3969/j.issn.2095-0780.2016.05.010
    [6]
    任鸣春. 军曹鱼和虹鳟糖类营养生理研究[D]. 青岛: 中国海洋大学, 2012: 115-135.
    [7]
    BALMACEDA-AGUILERA C, MARTOS-SITCHA J A, MANCERA J. Cloning and expression pattern of facilitative glucose transporter 1 (GLUT1) in gilthead sea bream Sparus aurata in response to salinity acclimation[J]. Comp Biochem Physiol A, 2012, 163(1): 38-46. doi: 10.1016/j.cbpa.2012.04.026
    [8]
    MARTINEZ-QUINTANA J A, PEREGRINO-URIARTE A B, GOLLAS-GALVÁN S, et al. The glucose transporter 1-GLUT1-from the white shrimp Litopenaeus vannamei is up-regulated during hypoxia[J]. Mol Biol Rep, 2014, 41(12): 7885-7898. doi: 10.1007/s11033-014-3682-8
    [9]
    WANG X D, LI E C, CHEN K, et al. Response of facilitative glucose transporter 1 to salinity stress and dietary carbohydrate nutrition in white shrimp Litopenaeus vannamei[J]. Aquacult Nutr, 2017, 23(1): 90-100. doi: 10.1111/anu.2017.23.issue-1
    [10]
    LI R X, LIU H Y, DONG X H, et al. Molecular characterization and expression analysis of glucose transporter 1 and hepatic glycolytic enzymes activities from herbivorous fish Ctenopharyngodon idellus in respond to a glucose load after the adaptation to dietary carbohydrate levels[J]. Aquaculture, 2018, 492: 290-299. doi: 10.1016/j.aquaculture.2018.04.028
    [11]
    LIU H Y, DONG X H, CHI S Y, et al. Molecular cloning of glucose transporter 1 in grouper Epinephelus coioides and effects of an acute hyperglycemia stress on its expression and glucose tolerance[J]. Fish Physiol Biochem, 2017, 43(1): 103-114. doi: 10.1007/s10695-016-0271-x
    [12]
    杨其彬, 叶乐, 温为庚, 等. 盐度对斑节对虾蜕壳、存活、生长和饲料转化率的影响[J]. 南方水产, 2008, 4(1): 16-21. doi: 10.3969/j.issn.2095-0780.2008.01.003
    [13]
    滕继林, 肖军. 葡萄糖转运蛋白1的研究进展[J]. 生物学教学, 2015, 40(6): 2-3.
    [14]
    江世贵, 杨丛海, 周发林, 等. 斑节对虾种虾繁育技术[M]. 北京: 海洋出版社, 2013: 80-81.
    [15]
    YANG L, LI X, JIANG S, et al. Characterization of Argonaute2 gene from black tiger shrimp (Penaeus monodon) and its responses to immune challenges[J]. Fish Shellfish Immunol, 2014, 36(1): 261-269. doi: 10.1016/j.fsi.2013.11.010
    [16]
    吴勉之, 杨丽诗, 周发林, 等. 斑节对虾2种高血糖激素家族基因的基因组序列分析和表达研究[J]. 南方水产科学, 2018, 14(4): 27-36. doi: 10.3969/j.issn.2095-0780.2018.04.004
    [17]
    邱萤. 企鹅珍珠贝葡萄糖转运蛋白1同源异构型基因的克隆及对葡萄糖应激的表达响应分析[D]. 上海: 上海海洋大学, 2016: 41-46.
    [18]
    HALL J R, MACCORMACK T J, BARRY C A, et al. Sequence and expression of a constitutive, facilitated glucose transporter (GLUT1) in Atlantic cod Gadus morhua[J]. J Exp Biol, 2004, 207(26): 4697-4706. doi: 10.1242/jeb.01346
    [19]
    MORRIS S. Neuroendocrine regulation of osmoregulation and the evolution of air-breathing in decapod crustaceans[J]. J Exp Biol, 2001, 204(5): 979-989.
    [20]
    VINAGRE A S, da SILVA R S M. Effects of fasting and refeeding on metabolic processes in the crab Chasmagnathus granulata (Dana, 1851)[J]. Can J Zool, 2002, 80(8): 1413-1421. doi: 10.1139/z02-122
    [21]
    WANG X D, LI E C, XU Z X, et al. Molecular response of carbohydrate metabolism to dietary carbohydrate and acute low salinity stress in Pacific white shrimp Litopenaeus vannamei[J]. Turkish J Fish Aquat Sci, 2017, 17(1): 153-169.
    [22]
    SÁNCHEZ-PAZ A, GARCÍA-CARREÑO F, HERNÁNDEZ-LÓPEZ J, et al. Effect of short-term starvation on hepatopancreas and plasma energy reserves of the Pacific white shrimp (Litopenaeus vannamei)[J]. J Exp Mar Bio Ecol, 2007, 340(2): 184-193. doi: 10.1016/j.jembe.2006.09.006
    [23]
    OLIVEIRA G T, da SILVA R S M. Hepatopancreas gluconeogenesis during hyposmotic stress in crabs Chasmagnathus granulata maintained on high-protein or carbohydrate-rich diets[J]. Comp Biochem Physiol B, 2000, 127(3): 375-381. doi: 10.1016/S0305-0491(00)00274-1
    [24]
    ROSAS C, CUZON G, GAXIOLA G, et al. Metabolism and growth of juveniles of Litopenaeus vannamei: effect of salinity and dietary carbohydrate levels[J]. J Exp Mar Bio Ecol, 2001, 259(1): 1-22. doi: 10.1016/S0022-0981(01)00222-2
    [25]
    CARMONA R, GARCÍA-GALLEGO M, SANZ A, et al. Chloride cells and pavement cells in gill epithelia of Acipenser naccarii: ultrastructural modifications in seawater-acclimated specimens[J]. J Fish Biol, 2004, 64(2): 553-566. doi: 10.1111/jfb.2004.64.issue-2
    [26]
    王晓杰, 张秀梅, 姜明. 盐度胁迫对许氏平鲉鳃、头肾、脾脏超微结构的影响[J]. 中国海洋大学学报(自然科学版), 2006(S1): 85-90.
    [27]
    王艳, 胡先成. 不同盐度下鲈鱼稚鱼鳃的显微结构观察[J]. 海洋科学, 2009, 33(12): 138-142.
    [28]
    张硕, 董双林. 饵料和盐度对中国对虾幼虾能量收支的影响[J]. 大连水产学院学报, 2002, 17(3): 227-233. doi: 10.3969/j.issn.1000-9957.2002.03.009
    [29]
    YE L, JIANG S G, ZHU X M, et al. Effects of salinity on growth and energy budget of juvenile Penaeus monodon[J]. Aquaculture, 2009, 290(1/2): 140-144.
    [30]
    YIN S J, ZHANG L M, ZHANG L L, et al. Metabolic responses and arginine kinase expression of juvenile cuttlefish (Sepia pharaonis) under salinity stress[J]. Int J Biol Macromol, 2018, 113: 881-888. doi: 10.1016/j.ijbiomac.2018.03.036
  • Related Articles

    [1]WU Fan, LI Yunfeng, MA Baoshan, ZHANG Yan, RU Huijun, SHEN Ziwei, WEI Nian. Fish community structure and environmental impact factors in Three Gorges Reservoir during summer and autumn[J]. South China Fisheries Science. DOI: 10.12131/20240199
    [2]TONG Fei, FENG Xue, YUAN Huarong, CHEN Yuxiang, SHU Liming, LIU Yan, CHEN Pimao. Study on disturbance of oyster culture on environmental factors and bacterioplankton in Dapeng Cove[J]. South China Fisheries Science, 2024, 20(5): 32-41. DOI: 10.12131/20240138
    [3]MA Youcheng, ZHU Guoping, ZHANG Jian, WANG Xiao, ZHANG Honglin, SHI Jiangao. Influence of environmental factors on CPUE of three different fishing methods in skipjack tuna fisheries[J]. South China Fisheries Science, 2023, 19(6): 11-20. DOI: 10.12131/20230102
    [4]GONG Yuyan, XIAO Yayuan, XU Shannan, LIU Yong, YANG Yutao, HUANG Zirong, LI Chunhou. Zooplankton community structure in Hailing Bay and its relationship with primary environmental factors[J]. South China Fisheries Science, 2019, 15(6): 49-55. DOI: 10.12131/20180220
    [5]YANG Baoli, WANG Ruixuan, SHI Shaokun, WANG Jiangyong. Density variation of Vibrio in ablone aquaculture water and its relationship with environmental factors[J]. South China Fisheries Science, 2015, 11(3): 95-102. DOI: 10.3969/j.issn.2095-0780.2015.03.015
    [6]SHEN Yonglong, HUANG Jintian, GE Xianping, WANG Aimin, LV Fu, SHEN Nannan, CAI Wancun. Effects of several key environmental factors on survival of artificial breeding of Onchidium struma[J]. South China Fisheries Science, 2012, 8(6): 57-64. DOI: 10.3969/j.issn.2095-0780.2012.06.009
    [7]CAO Yucheng, LI Zhuojia, YANG Yingying, WEN Guoliang, HUANG Honghui. Effects of Bacillus licheniformis strain De on growth of Sparus latus and main environmental factors in aquaculture pond[J]. South China Fisheries Science, 2010, 6(3): 1-6. DOI: 10.3969/j.issn.1673-2227.2010.03.001
    [8]ZHOU Haiping, LI Zhuojia, YANG Yingying, CHEN Yongqing. Effects of environmental factors on the growth of Lactobacillus spp[J]. South China Fisheries Science, 2006, 2(4): 65-67.
    [9]GUO Genxi. The existing problem and basic countermeasure in the industrialization development of deep-water net cage culture in China[J]. South China Fisheries Science, 2006, 2(1): 66-70.
    [10]JIANG Zeng-jie, FANG Jian-guang. Effects of fouling organisms on shellfish cultivation and its prevention[J]. South China Fisheries Science, 2005, 1(3): 65-68.
  • Cited by

    Periodical cited type(8)

    1. 王旭蕾,高进,齐鑫,王永波,陈傅晓,刘金叶,符书源. 5种石斑鱼全基因组微卫星筛选与特征分析. 渔业科学进展. 2024(03): 149-158 .
    2. 崔同心,刘海洋,张晋,欧密,罗青,费树站,陈昆慈,赵建. 基于单核苷酸多态性标记的7个斑鳢野生群体的遗传结构和遗传多样性分析. 中国水产科学. 2024(07): 829-838 .
    3. 马骞,吴雨薇,王刘永,赵晓龙,周启苓,陈刚,黄建盛. 军曹鱼全基因组微卫星特征分析与多态性标记的筛选及应用. 渔业科学进展. 2023(04): 135-144 .
    4. 范士琦,冯婧昀,苗晓敏,郭慧,陶怡曦,李云. 重庆养殖场鳜群体微卫星遗传多样性研究. 水产养殖. 2023(07): 18-23 .
    5. 杨尉,司圆圆,许瑞雯,陈兴汉. 基于基因组survey数据的疣吻沙蚕微卫星特征分析及多态标记开发. 南方水产科学. 2023(05): 123-133 . 本站查看
    6. 彭冶,李杰,王涛,张凯,宁先会,暨杰,尹绍武. 瓦氏黄颡鱼全基因组微卫星的分布特征及其定位的初步研究. 南方水产科学. 2022(01): 90-98 . 本站查看
    7. 田镇,陈爱华,吴杨平,陈素华,张雨,曹奕,张志东,李秋洁. 文蛤转录组中微卫星位点生物信息分析. 海洋渔业. 2021(02): 160-167 .
    8. 梁霞,王慧琪,马宇璇,宋磊,吴超,李亮徽,张国松. 鲤鱼(Cyprinus carpio)全基因组微卫星分布特征研究. 南京师大学报(自然科学版). 2021(03): 103-111 .

    Other cited types(4)

Catalog

    Article views (4487) PDF downloads (49) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return